scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A review of studies using graphenes in energy conversion, energy storage and heat transfer development

TL;DR: In this paper, the authors have shown that the graphene fiber application on the battery can significantly increase the charge and discharge rates with enhanced storage capacity of 763 F g−1.
About: This article is published in Energy Conversion and Management.The article was published on 2019-03-15. It has received 101 citations till now. The article focuses on the topics: Graphene foam & Graphene oxide paper.
Citations
More filters
01 Aug 2011
TL;DR: It is demonstrated that the power generation of a nanogenerator was strongly influenced by the choice of a graphene electrode with a modified work function and leakage current was observed in graphene films with low work functions.
Abstract: It is essential to control the electronic structure of graphene in order to apply graphene films for use in electrodes. We have introduced chemical dopants that modulate the electronic properties of few-layer graphene films synthesized by chemical vapor deposition. The work function, sheet carrier density, mobility, and sheet resistance of these films were systematically modulated by the reduction potential values of dopants. We further demonstrated that the power generation of a nanogenerator was strongly influenced by the choice of a graphene electrode with a modified work function. The off-current was well quenched in graphene films with high work functions (Au-doped) due to the formation of high Schottky barrier heights, whereas leakage current was observed in graphene films with low work functions (viologen-doped), due to nearly ohmic contact.

226 citations

Journal ArticleDOI
TL;DR: The phase change material (PCM) based battery thermal management system (BTMS) is an effective cooling system for ensuring the reliability, safety, lifespan and performance of li-ion batteries as mentioned in this paper.

194 citations

Journal ArticleDOI
TL;DR: In this article, the capabilities of graphene-based nanofluids are examined, and new developments on preparation techniques, stability improvement, and types of surfactants utilized are reviewed.

143 citations

Journal ArticleDOI
01 Jun 2019-Energy
TL;DR: In this work, some battery SOH relate features are selected theoretically, proved and then re-screened mathematically, thereby a model that is suitable for lithium-ion Battery SOH estimation under multi-working conditions can be built.

116 citations

References
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI
19 Jun 2009-Science
TL;DR: This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
Abstract: Graphene is a wonder material with many superlatives to its name. It is the thinnest known material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have zero effective mass, and can travel for micrometers without scattering at room temperature. Graphene can sustain current densities six orders of magnitude higher than that of copper, shows record thermal conductivity and stiffness, is impermeable to gases, and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a benchtop experiment. This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.

12,117 citations

Journal ArticleDOI
TL;DR: In this paper, a selfconsistent density functional method using standard norm-conserving pseudopotentials and a flexible, numerical linear combination of atomic orbitals basis set, which includes multiple-zeta and polarization orbitals, was developed and implemented.
Abstract: We have developed and implemented a selfconsistent density functional method using standard norm-conserving pseudopotentials and a flexible, numerical linear combination of atomic orbitals basis set, which includes multiple-zeta and polarization orbitals. Exchange and correlation are treated with the local spin density or generalized gradient approximations. The basis functions and the electron density are projected on a real-space grid, in order to calculate the Hartree and exchange-correlation potentials and matrix elements, with a number of operations that scales linearly with the size of the system. We use a modified energy functional, whose minimization produces orthogonal wavefunctions and the same energy and density as the Kohn-Sham energy functional, without the need for an explicit orthogonalization. Additionally, using localized Wannier-like electron wavefunctions allows the computation time and memory required to minimize the energy to also scale linearly with the size of the system. Forces and stresses are also calculated efficiently and accurately, thus allowing structural relaxation and molecular dynamics simulations.

8,723 citations

Journal ArticleDOI
TL;DR: The roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates are reported, showing high quality and sheet resistances superior to commercial transparent electrodes such as indium tin oxides.
Abstract: The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as approximately 125 ohms square(-1) with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as approximately 30 ohms square(-1) at approximately 90% transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.

7,709 citations

Journal ArticleDOI
TL;DR: Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability as discussed by the authors, and its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability.
Abstract: The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential lies in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultrawideband tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light-emitting devices to touch screens, photodetectors and ultrafast lasers. Here we review the state-of-the-art in this emerging field.

6,863 citations

Trending Questions (3)
Can a graphene battery explode?

In terms of energy transfer, the graphene fiber application on the battery can significantly increase the charge and discharge rates with enhanced storage capacity of 763 F g−1.

Who supplies graphene?

Based on our work, the researchers can choose graphene products (graphene paper, graphene film, graphene foam or graphene fiber) efficiently according to the research object in the future.

Does graphene wax work?

The work done in this paper can effectively help promote the application of graphene in energy field.