scispace - formally typeset
Journal ArticleDOI

A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications

Reads0
Chats0
TLDR
In this paper, the photo-degradation mechanisms of persistent organic pollutants (POPs) and the recent progress in ZnO nanostructured fabrication methods including doping, heterojunction and modification techniques as well as improvements of ZnOs as a photocatalyst are reviewed.
Abstract
Persistent organic pollutants (POPs) are carbon-based chemical substances that are resistant to environmental degradation and may not be completely removed through treatment processes. Their persistence can contribute to adverse health impacts on wild-life and human beings. Thus, the solar photocatalysis process has received increasing attention due to its great potential as a green and eco-friendly process for the elimination of POPs to increase the security of clean water. In this context, ZnO nanostructures have been shown to be prominent photocatalyst candidates to be used in photodegradation owing to the facts that they are low-cost, non-toxic and more efficient in the absorption across a large fraction of the solar spectrum compared to TiO 2 . There are several aspects, however, need to be taken into consideration for further development. The purpose of this paper is to review the photo-degradation mechanisms of POPs and the recent progress in ZnO nanostructured fabrication methods including doping, heterojunction and modification techniques as well as improvements of ZnO as a photocatalyst. The second objective of this review is to evaluate the immobilization of photocatalyst and suspension systems while looking into their future challenges and prospects.

read more

Citations
More filters
Journal ArticleDOI

Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-light-driven photocatalysts

TL;DR: In this article, the main advancements in overcoming the barriers accompanied by pure ZnO and the criteria for fabrication of effective visible-light-responsive (ZnO-based) photocatalysts are reviewed.
Journal ArticleDOI

Covalent organic framework photocatalysts: structures and applications

TL;DR: In this critical review, the recent progress and advances of COF photocatalysts are thoroughly presented and diverse linkers between COF building blocks such as boron- containing connections and nitrogen-containing connections are summarised and compared.
Journal ArticleDOI

Recent Progress on Engineering Highly Efficient Porous Semiconductor Photocatalysts Derived from Metal-Organic Frameworks.

TL;DR: Recent development of porous structures, such as metal oxides and metal sulfides, and their heterostructures, derived from MOF-based materials as catalysts for various light-driven energy-/environment-related reactions, including water splitting, CO2 reduction, organic redox reaction, and pollution degradation are summarized.
Journal ArticleDOI

A review on catalyst development for dry reforming of methane to syngas: Recent advances

TL;DR: In this paper, a review provides a contemporary assessment of progresses recorded on synergistic interplay among catalyst components (active metals, support, promoters and binders) during dry reforming using state-of-the-art experimental and theoretical techniques.
Journal ArticleDOI

Role of Nanomaterials in the Treatment of Wastewater: A Review

TL;DR: In this paper, a review article describes various applications of nanomaterials in removing different types of impurities from polluted water, which carried huge potential to treat polluted water (containing metal toxin substance, different organic and inorganic impurities) very effectively due to their unique properties like greater surface area, able to work at low concentration, etc.
References
More filters
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Journal ArticleDOI

Superior Thermal Conductivity of Single-Layer Graphene

TL;DR: The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction and establishes graphene as an excellent material for thermal management.
Journal ArticleDOI

Graphene-Based Ultracapacitors

TL;DR: CMG materials are made from 1-atom thick sheets of carbon, functionalized as needed, and here their performance in an ultracapacitor cell is demonstrated, illustrating the exciting potential for high performance, electrical energy storage devices based on this new class of carbon material.
Journal ArticleDOI

Ultrahigh electron mobility in suspended graphene

TL;DR: In this paper, a single layer graphene was suspended ∼150nm above a Si/SiO2 gate electrode and electrical contacts to the graphene was achieved by a combination of electron beam lithography and etching.
Journal ArticleDOI

Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism.

TL;DR: This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination,ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration.
Related Papers (5)