scispace - formally typeset
Journal ArticleDOI

A review on 3D micro-additive manufacturing technologies

Reads0
Chats0
TLDR
In this paper, 3D micro-AM processes have been classified into three main groups, including scalable micro-am systems, 3D direct writing, and hybrid processes, and the key processes are reviewed comprehensively.
Abstract
New microproducts need the utilization of a diversity of materials and have complicated three-dimensional (3D) microstructures with high aspect ratios. To date, many micromanufacturing processes have been developed but specific class of such processes are applicable for fabrication of functional and true 3D microcomponents/assemblies. The aptitude to process a broad range of materials and the ability to fabricate functional and geometrically complicated 3D microstructures provides the additive manufacturing (AM) processes some profits over traditional methods, such as lithography-based or micromachining approaches investigated widely in the past. In this paper, 3D micro-AM processes have been classified into three main groups, including scalable micro-AM systems, 3D direct writing, and hybrid processes, and the key processes have been reviewed comprehensively. Principle and recent progress of each 3D micro-AM process has been described, and the advantages and disadvantages of each process have been presented.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Additive manufacturing (3D printing): A review of materials, methods, applications and challenges

TL;DR: A comprehensive review of the main 3D printing methods, materials and their development in trending applications was carried out in this paper, where the revolutionary applications of AM in biomedical, aerospace, buildings and protective structures were discussed.
Journal ArticleDOI

Polymers for 3D Printing and Customized Additive Manufacturing

TL;DR: Polymers are by far the most utilized class of materials for AM and their design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed.
Journal Article

Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication

TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of 3D micro-optical and micromechanical structures, including photonic-bandgap-type structures.
Journal ArticleDOI

Mechanical characterization of 3D-printed polymers

TL;DR: In this article, the authors provide a brief discussion about additive manufacturing and also the most employed additive manufacturing technologies for polymers, specifically, properties under different loading types such as tensile, bending, compressive, fatigue, impact and others.
Journal ArticleDOI

3D printed microfluidic devices: enablers and barriers

TL;DR: This critical review covers the current state of 3D printing for microfluidics, focusing on the four most frequently used printing approaches: inkjet, stereolithography (SLA), two photon polymerisation (2PP) and extrusion printing (focusing on fused deposition modeling).
References
More filters
Book

Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing

TL;DR: Gibson et al. as discussed by the authors presented a comprehensive overview of additive manufacturing technologies plus descriptions of support technologies like software systems and post-processing approaches, and provided systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing.
Journal ArticleDOI

Finer features for functional microdevices

TL;DR: Micromachines can be created with higher resolution using two-photon absorption, and the results can be higher resolution than previously reported using single photon absorption techniques.
Journal ArticleDOI

Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication

TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive readout, and the fabrication of threedimensional micro-optical and micromechanical structures, including photonic bandgap-type structures.
Book

Fundamentals of microfabrication : the science of miniaturization

Marc J. Madou
TL;DR: In this paper, a comparison of top-down and bottom-up manufacturing methods for micro-manufacturing is presented, with a focus on the use of micro-processors.
Journal Article

Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication

TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of 3D micro-optical and micromechanical structures, including photonic-bandgap-type structures.
Related Papers (5)