scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A review on CXCR4/CXCL12 axis in oncology: No place to hide

TL;DR: This review focuses on roles in cancer cell-tumour microenvironment interaction and summarises strategies for treating cancer by disrupting this interaction with special emphasis on the CXCR4/CXCL12 axis.
About: This article is published in European Journal of Cancer.The article was published on 2013-01-01. It has received 534 citations till now. The article focuses on the topics: Targeted therapy & Cancer stem cell.
Citations
More filters
Journal ArticleDOI
TL;DR: More precise reporting of the parameters that are used to identify CSCs and to attribute responses to them is recommended as key to accelerating an understanding of their biology and developing more effective methods for their eradication in patients.
Abstract: The cancer stem cell (CSC) concept has important therapeutic implications, but its investigation has been hampered both by a lack of consistency in the terms used for these cells and by how they are defined. Evidence of their heterogeneous origins, frequencies and their genomic, as well as their phenotypic and functional, properties has added to the confusion and has fuelled new ideas and controversies. Participants in The Year 2011 Working Conference on CSCs met to review these issues and to propose a conceptual and practical framework for CSC terminology. More precise reporting of the parameters that are used to identify CSCs and to attribute responses to them is also recommended as key to accelerating an understanding of their biology and developing more effective methods for their eradication in patients.

604 citations

Journal ArticleDOI
Lanlan Hui1, Ye Chen1
TL;DR: New insights into the tumor microenvironment are reviewed, and selected examples of the cross-talk between tumor cells and their microenvironment, which have enhanced the understanding of pathophysiology of the micro environment are summarized.

550 citations

Book ChapterDOI
TL;DR: This review provides a comprehensive overview of the biological involvement of CXCR4 in human cancers, the current status of C XCR4-based therapeutic approaches, as well as recent advances in noninvasive imaging of CxCR4 expression.
Abstract: Chemokines mediate numerous physiological and pathological processes related primarily to cell homing and migration. The chemokine CXCL12, also known as stromal cell-derived factor-1, binds the G-protein-coupled receptor CXCR4, which, through multiple divergent pathways, leads to chemotaxis, enhanced intracellular calcium, cell adhesion, survival, proliferation, and gene transcription. CXCR4, initially discovered for its involvement in HIV entry and leukocytes trafficking, is overexpressed in more than 23 human cancers. Cancer cell CXCR4 overexpression contributes to tumor growth, invasion, angiogenesis, metastasis, relapse, and therapeutic resistance. CXCR4 antagonism has been shown to disrupt tumor–stromal interactions, sensitize cancer cells to cytotoxic drugs, and reduce tumor growth and metastatic burden. As such, CXCR4 is a target not only for therapeutic intervention but also for noninvasive monitoring of disease progression and therapeutic guidance. This review provides a comprehensive overview of the biological involvement of CXCR4 in human cancers, the current status of CXCR4-based therapeutic approaches, as well as recent advances in noninvasive imaging of CXCR4 expression.

441 citations


Cites background from "A review on CXCR4/CXCL12 axis in on..."

  • ...Similarly, the CXCR4/CXCL12 axis is critical for mesenchymal stem cell recruitment to the tumors (Domanska et al., 2012)....

    [...]

Journal ArticleDOI
TL;DR: It is shown that N6-methyladenosine (m6A) mRNA demethylation by fat mass and obesity-associated protein (FTO) increases melanoma growth and decreases response to anti-PD-1 blockade immunotherapy, and it is suggested that the combination of FTO inhibition with anti- PD1 blockade may reduce the resistance to immunotherapy in melanoma.
Abstract: Melanoma is one of the most deadly and therapy-resistant cancers. Here we show that N6-methyladenosine (m6A) mRNA demethylation by fat mass and obesity-associated protein (FTO) increases melanoma growth and decreases response to anti-PD-1 blockade immunotherapy. FTO level is increased in human melanoma and enhances melanoma tumorigenesis in mice. FTO is induced by metabolic starvation stress through the autophagy and NF-κB pathway. Knockdown of FTO increases m6A methylation in the critical protumorigenic melanoma cell-intrinsic genes including PD-1 (PDCD1), CXCR4, and SOX10, leading to increased RNA decay through the m6A reader YTHDF2. Knockdown of FTO sensitizes melanoma cells to interferon gamma (IFNγ) and sensitizes melanoma to anti-PD-1 treatment in mice, depending on adaptive immunity. Our findings demonstrate a crucial role of FTO as an m6A demethylase in promoting melanoma tumorigenesis and anti-PD-1 resistance, and suggest that the combination of FTO inhibition with anti-PD-1 blockade may reduce the resistance to immunotherapy in melanoma.

404 citations

Journal ArticleDOI
TL;DR: To maximize the impact of immunotherapy drug development, pretreatment stratification of targets associated with either the T cell–inflated or noninflamed tumor microenvironment should be employed and biomarkers predictive of responsiveness to specific immunomodulatory therapies should guide therapy selection.
Abstract: Immunotherapies such as checkpoint-blocking antibodies and adoptive cell transfer are emerging as treatments for a growing number of cancers. Despite clinical activity of immunotherapies across a range of cancer types, the majority of patients fail to respond to these treatments and resistance mechanisms remain incompletely defined. Responses to immunotherapy preferentially occur in tumors with a preexisting antitumor T-cell response that can most robustly be measured via expression of dendritic cell and CD8+ T cell-associated genes. The tumor subset with high expression of this signature has been described as the T cell-"inflamed" phenotype. Segregating tumors by expression of the inflamed signature may help predict immunotherapy responsiveness. Understanding mechanisms of resistance in both the T cell-inflamed and noninflamed subsets of tumors will be critical in overcoming treatment failure and expanding the proportion of patients responding to current immunotherapies. To maximize the impact of immunotherapy drug development, pretreatment stratification of targets associated with either the T cell-inflamed or noninflamed tumor microenvironment should be employed. Similarly, biomarkers predictive of responsiveness to specific immunomodulatory therapies should guide therapy selection in a growing landscape of treatment options. Combination strategies may ultimately require converting non-T cell-inflamed tumors into T cell-inflamed tumors as a means to sensitize tumors to therapies dependent on T-cell killing. Cancer Immunol Res; 6(9); 990-1000. ©2018 AACR.

277 citations

References
More filters
Journal ArticleDOI
01 Mar 2001-Nature
TL;DR: It is reported that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases and their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis.
Abstract: Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1α and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.

5,132 citations

Journal ArticleDOI
10 May 1996-Science
TL;DR: A cofactor for HIV-1 (human immunodeficiency virus-type 1) fusion and entry was identified with the use of a novel functional complementary DNA (cDNA) cloning strategy that is a putative G protein-coupled receptor with seven transmembrane segments.
Abstract: A cofactor for HIV-1 (human immunodeficiency virus-type 1) fusion and entry was identified with the use of a novel functional complementary DNA (cDNA) cloning strategy. This protein, designated “fusin,” is a putative G protein-coupled receptor with seven transmembrane segments. Recombinant fusin enabled CD4-expressing nonhuman cell types to support HIV-1 Env-mediated cell fusion and HIV-1 infection. Antibodies to fusin blocked cell fusion and infection with normal CD4-positive human target cells. Fusin messenger RNA levels correlated with HIV-1 permissiveness in diverse human cell types. Fusin acted preferentially for T cell line-tropic isolates, in comparison to its activity with macrophage-tropic HIV-1 isolates.

4,231 citations

Journal Article
TL;DR: Fusin this article is a putative G protein-coupled receptor with seven transmembrane segments, which enabled CD4-expressing nonhuman cell types to support HIV-1 Env-mediated cell fusion and infection.
Abstract: A cofactor for HIV-1 (human immunodeficiency virus-type 1) fusion and entry was identified with the use of a novel functional complementary DNA (cDNA) cloning strategy. This protein, designated "fusin," is a putative G protein-coupled receptor with seven transmembrane segments. Recombinant fusin enabled CD4-expressing nonhuman cell types to support HIV-1 Env-mediated cell fusion and HIV-1 infection. Antibodies to fusin blocked cell fusion and infection with normal CD4-positive human target cells. Fusin messenger RNA levels correlated with HIV-1 permissiveness in diverse human cell types. Fusin acted preferentially for T cell line-tropic isolates, in comparison to its activity with macrophage-tropic HIV-1 isolates.

4,010 citations

Journal ArticleDOI
06 May 2005-Cell
TL;DR: Using a coimplantation tumor xenograft model, it is demonstrated that carcinoma-associated fibroblasts extracted from human breast carcinomas promote the growth of admixed breast carcinoma cells significantly more than do normal mammaries derived from the same patients.

3,373 citations

Journal ArticleDOI
11 Jun 1998-Nature
TL;DR: This is the first demonstration of the involvement of a G-protein-coupled chemokine receptor in neuronal cell migration and patterning in the central nervous system and may be important for designing strategies to block HIV entry into cells and for understanding mechanisms of pathogenesis in AIDS dementia.
Abstract: Chemokines and their receptors are important in cell migration during inflammation, in the establishment of functional lymphoid microenvironments, and in organogenesis. The chemokine receptor CXCR4 is broadly expressed in cells of both the immune and the central nervous systems and can mediate migration of resting leukocytes and haematopoietic progenitors in response to its ligand, SDF-1. CXCR4 is also a major receptor for strains of human immunodeficiency virus-1 (HIV-1) that arise during progression to immunodeficiency and AIDS dementia. Here we show that mice lacking CXCR4 exhibit haematopoietic and cardiac defects identical to those of SDF-1-deficient mice, indicating that CXCR4 may be the only receptor for SDF-1. Furthermore, fetal cerebellar development in mutant animals is markedly different from that in wild-type animals, with many proliferating granule cells invading the cerebellar anlage. This is, to our knowledge, the first demonstration of the involvement of a G-protein-coupled chemokine receptor in neuronal cell migration and patterning in the central nervous system. These results may be important for designing strategies to block HIV entry into cells and for understanding mechanisms of pathogenesis in AIDS dementia.

2,506 citations