scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes

TL;DR: In this paper, the physical, mechanical and tribological properties of various surface coatings and their impact on the replication efficiency and lifetime of micro/nano-molds that are used in micro-nano hot-embossing and injection molding processes are discussed.
Abstract: Micro/nano hot-embossing and injection molding are two promising manufacturing processes for the mass production of workpieces bearing micro/nanoscale features. However, both the workpiece and micro/nano-mold are susceptive to structural damage due to high thermal stress, adhesion and friction, which occur at the interface between the workpiece and the mold during these processes. Hence, major constraints of micro/nano-molds are mainly attributed to improper replication and their inability to withstand a prolonged sliding surface contact because of high sidewall friction and/or high adhesion. Consequently, there is a need for proper surface coating as it can improve the surface properties of micro/nano-molds such as having a low friction coefficient, low adhesion and low wear rate. This review deals with the physical, mechanical and tribological properties of various surface coatings and their impact on the replication efficiency and lifetime of micro/nano-molds that are used in micro/nano hot-embossing and injection molding processes.
Citations
More filters
01 Mar 2010
TL;DR: Using friction force microscopy, the nanoscale frictional characteristics of atomically thin sheets of graphene, molybdenum disulfide, niobium diselenide, and hexagonal boron nitride are compared to those of their bulk counterparts, suggesting that the trend arises from the thinner sheets’ increased susceptibility to out-of-plane elastic deformation.
Abstract: Thin Friction The rubbing motion between two surfaces is always hindered by friction, which is caused by continuous contacting and attraction between the surfaces. These interactions may only occur over a distance of a few nanometers, but what happens when the interacting materials are only that thick? Lee et al. (p. 76; see the Perspective by Müser and Shakhvorostov) explored the frictional properties of a silicon tip in contact with four atomically thin quasi–two dimensional materials with different electrical properties. For all the materials, the friction was seen to increase as the thickness of the film decreased, both for flakes supported by substrates and for regions placed above holes that formed freely suspended membranes. Placing graphene on mica, to which it strongly adheres, suppressed this trend. For these thin, weakly adhered films, out-of-plane buckling is likely to dominate the frictional response, which leads to this universal behavior. A universal trend is observed for the friction properties of thin films on weakly adhering substrates. Using friction force microscopy, we compared the nanoscale frictional characteristics of atomically thin sheets of graphene, molybdenum disulfide (MoS2), niobium diselenide, and hexagonal boron nitride exfoliated onto a weakly adherent substrate (silicon oxide) to those of their bulk counterparts. Measurements down to single atomic sheets revealed that friction monotonically increased as the number of layers decreased for all four materials. Suspended graphene membranes showed the same trend, but binding the graphene strongly to a mica surface suppressed the trend. Tip-sample adhesion forces were indistinguishable for all thicknesses and substrate arrangements. Both graphene and MoS2 exhibited atomic lattice stick-slip friction, with the thinnest sheets possessing a sliding-length–dependent increase in static friction. These observations, coupled with finite element modeling, suggest that the trend arises from the thinner sheets’ increased susceptibility to out-of-plane elastic deformation. The generality of the results indicates that this may be a universal characteristic of nanoscale friction for atomically thin materials weakly bound to substrates.

244 citations

Journal ArticleDOI
TL;DR: In this article, the influence of processing parameters on the quality of final parts and the precision of final product dimensions in both thermoplastic polymers and rubber materials is discussed and compared.
Abstract: Micro injection molding is in great demand due to its efficiency and applicability for industry. Polymer surfaces having micro-nanostructures can be produced using injection molding. However, it is not as straightforward as scaling-up of conventional injection molding. The paper is organized based on three main technical areas: mold inserts, processing parameters, and demolding. An accurate set of processing parameters is required to achieve precise micro injection molding. This review provides a comparative description of the influence of processing parameters on the quality of final parts and the precision of final product dimensions in both thermoplastic polymers and rubber materials. It also highlights the key parameters to attain a high quality micro-nanostructured polymer and addresses the contradictory effects of these parameters on the final result. Moreover, since the produced part should be properly demolded to possess a high quality textured polymer, various demolding techniques are assessed in this review as well.

107 citations

Journal ArticleDOI
TL;DR: In this article, a new direct adhesion method is introduced that does not require additional heat management and instead makes use of an organic solvent, which is used to bond micro/nanostructured aluminum and acrylonitrile butadiene styrene.

23 citations

References
More filters
Book
01 Jan 1954
TL;DR: Tabor and Bowden as mentioned in this paper reviewed the many advances made in this field during the past 36 years and outlined the achievements of Frank Philip Bowden, and reviewed the behavior of non-metals, especially elastomers; elastohydrodynamic lubrication; and the wear of sliding surfaces.
Abstract: Originally published in 1950, this classic book was a landmark in the development of the subject of tribology. For this edition, David Tabor has written a new preface, reviewing the many advances made in this field during the past 36 years and outlining the achievements of Frank Philip Bowden. The book covers the behavior of non-metals, especially elastomers; elastohydrodynamic lubrication; and the wear of sliding surfaces, which has gradually replaced the earlier concentration on the mechanism of friction. It remains one of the most interesting and comprehensive works available on a single branch of physics.

5,834 citations

Journal ArticleDOI
01 Aug 2012-Carbon
TL;DR: In this paper, the state-of-the-art status of the reduction of GO on both techniques and mechanisms is reviewed, where the reduction process can partially restore the structure and properties of graphene.

4,187 citations

Journal ArticleDOI
TL;DR: The past success in organic light-emitting diodes provides scientists with confidence that organic photovoltaic devices will be a vital alternate to the inorganic counterpart, and the easiness of the fabrication holds the promise of very low-cost manufacturing process.
Abstract: Sun is the largest carbon-neutral energy source that has not been fully utilized. Although there are solar cell devices based on inorganic semiconductor to efficiently harvest solar energy, the cost of these conventional devices is too high to be economically viable. This is the major motivation for the development of organic photovoltaic (OPV) materials and devices, which are envisioned to exhibit advantages such as low cost, flexibility, and abundant availability. [1] The past success in organic light-emitting diodes provides scientists with confidence that organic photovoltaic devices will be a vital alternate to the inorganic counterpart. At the heart of the OPV technology advantage is the easiness of the fabrication, which holds the promise of very low-cost manufacturing process. A simple, yet successful technique is the solution-processed bulk heterojunction (BHJ) solar cell composed of electron-donating semiconducting polymers and electron-withdrawing fullerides as active layers. [2] The composite active layer can be prepared as a large area in a single step by using techniques such as spin-coating, inkjet-printing, spraycoating, gravure-coating, roller-casting etc. [3] In the last fifteen years, a significant progress has been made on the improvement of the power-conversion efficiency (PCE) of polymer BHJ solar cells, and the achieved efficiencies have evolved from less than 1% in the poly(phenylene vinylene) (PPV) system in 1995, [2] to 4‐5% in the poly(3-hexylthiphene) (P3HT) system in 2005, [4] to around 6%, as reported recently. [5] However, the efficiency of polymer solar cells is still significantly lower than their inorganic counterparts, such as silicon, CdTe and CIGS, which prevents practical applications in large scale.

3,602 citations

Journal ArticleDOI
TL;DR: Soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and topattern and manipulate cells.
Abstract: ▪ Abstract Soft lithography, a set of techniques for microfabrication, is based on printing and molding using elastomeric stamps with the patterns of interest in bas-relief. As a technique for fabricating microstructures for biological applications, soft lithography overcomes many of the shortcomings of photolithography. In particular, soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and to pattern and manipulate cells. For the relatively large feature sizes used in biology (≥50 μm), production of prototype patterns and structures is convenient, inexpensive, and rapid. Self-assembled monolayers of alkanethiolates on gold are particularly easy to pattern by soft lithography, and they provide exquisite control over surface biochemistry.

2,659 citations