scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A review on the key issues for lithium-ion battery management in electric vehicles

Languang Lu1, Xuebing Han1, Jianqiu Li1, Jianfeng Hua, Minggao Ouyang1 
15 Mar 2013-Journal of Power Sources (Elsevier)-Vol. 226, Iss: 226, pp 272-288
TL;DR: In this article, a brief introduction to the composition of the battery management system (BMS) and its key issues such as battery cell voltage measurement, battery states estimation, battery uniformity and equalization, battery fault diagnosis and so on, is given.
About: This article is published in Journal of Power Sources.The article was published on 2013-03-15. It has received 3650 citations till now. The article focuses on the topics: Automotive battery & Battery (electricity).
Citations
More filters
Journal ArticleDOI
Xuning Feng1, Minggao Ouyang1, Xiang Liu1, Languang Lu1, Yong Xia1, Xiangming He1 
TL;DR: In this article, the authors provided a comprehensive review on the thermal runaway mechanism of the commercial lithium ion battery for electric vehicles, and a three-level protection concept was proposed to help reduce thermal runaway hazard.

1,604 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent developments and issues concerning polyethylene oxide (PEO) based electrolytes for lithium-ion batteries is presented, including blending, modifying and making PEO derivatives.
Abstract: Poly(ethylene oxide) (PEO) based materials are widely considered as promising candidates of polymer hosts in solid-state electrolytes for high energy density secondary lithium batteries. They have several specific advantages such as high safety, easy fabrication, low cost, high energy density, good electrochemical stability, and excellent compatibility with lithium salts. However, the typical linear PEO does not meet the production requirement because of its insufficient ionic conductivity due to the high crystallinity of the ethylene oxide (EO) chains, which can restrain the ionic transition due to the stiff structure especially at low temperature. Scientists have explored different approaches to reduce the crystallinity and hence to improve the ionic conductivity of PEO-based electrolytes, including blending, modifying and making PEO derivatives. This review is focused on surveying the recent developments and issues concerning PEO-based electrolytes for lithium-ion batteries.

1,414 citations

Journal ArticleDOI
TL;DR: In this article, a detailed review of the state of the art and future perspectives of Li-ion batteries with emphasis on this potential is presented, with a focus on electric vehicles.
Abstract: Lithium-ion batteries play an important role in the life quality of modern society as the dominant technology for use in portable electronic devices such as mobile phones, tablets and laptops. Beyond this application lithium-ion batteries are the preferred option for the emerging electric vehicle sector, while still underexploited in power supply systems, especially in combination with photovoltaics and wind power. As a technological component, lithium-ion batteries present huge global potential towards energy sustainability and substantial reductions in carbon emissions. A detailed review is presented herein on the state of the art and future perspectives of Li-ion batteries with emphasis on this potential.

1,353 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the battery state of charge estimation and its management system for the sustainable future electric vehicles (EVs) applications is presented, which can guarantee a reliable and safe operation and assess the battery SOC.
Abstract: Due to increasing concerns about global warming, greenhouse gas emissions, and the depletion of fossil fuels, the electric vehicles (EVs) receive massive popularity due to their performances and efficiencies in recent decades. EVs have already been widely accepted in the automotive industries considering the most promising replacements in reducing CO2 emissions and global environmental issues. Lithium-ion batteries have attained huge attention in EVs application due to their lucrative features such as lightweight, fast charging, high energy density, low self-discharge and long lifespan. This paper comprehensively reviews the lithium-ion battery state of charge (SOC) estimation and its management system towards the sustainable future EV applications. The significance of battery management system (BMS) employing lithium-ion batteries is presented, which can guarantee a reliable and safe operation and assess the battery SOC. The review identifies that the SOC is a crucial parameter as it signifies the remaining available energy in a battery that provides an idea about charging/discharging strategies and protect the battery from overcharging/over discharging. It is also observed that the SOC of the existing lithium-ion batteries have a good contribution to run the EVs safely and efficiently with their charging/discharging capabilities. However, they still have some challenges due to their complex electro-chemical reactions, performance degradation and lack of accuracy towards the enhancement of battery performance and life. The classification of the estimation methodologies to estimate SOC focusing with the estimation model/algorithm, benefits, drawbacks and estimation error are extensively reviewed. The review highlights many factors and challenges with possible recommendations for the development of BMS and estimation of SOC in next-generation EV applications. All the highlighted insights of this review will widen the increasing efforts towards the development of the advanced SOC estimation method and energy management system of lithium-ion battery for the future high-tech EV applications.

1,150 citations

Journal ArticleDOI
Kai Liu1, Yayuan Liu1, Dingchang Lin1, Allen Pei1, Yi Cui1 
TL;DR: This Review aims to summarize the fundamentals of the origins of LIB safety issues and highlight recent key progress in materials design to improve LIB safety, especially for emerging LIBs with high-energy density.
Abstract: Lithium-ion batteries (LIBs) are considered to be one of the most important energy storage technologies. As the energy density of batteries increases, battery safety becomes even more critical if the energy is released unintentionally. Accidents related to fires and explosions of LIBs occur frequently worldwide. Some have caused serious threats to human life and health and have led to numerous product recalls by manufacturers. These incidents are reminders that safety is a prerequisite for batteries, and serious issues need to be resolved before the future application of high-energy battery systems. This Review aims to summarize the fundamentals of the origins of LIB safety issues and highlight recent key progress in materials design to improve LIB safety. We anticipate that this Review will inspire further improvement in battery safety, especially for emerging LIBs with high-energy density.

842 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, an extended Kalman filter (EKF) was used to estimate the battery state of charge, power fade, capacity fade, and instantaneous available power of a hybrid electric vehicle battery pack.

1,636 citations

Journal ArticleDOI
TL;DR: In this article, extended Kalman filtering (EKF) is used to estimate battery state-of-charge, power fade, capacity fade, and instantaneous available power for hybrid-electric-vehicle battery packs.

1,587 citations

Journal ArticleDOI
TL;DR: In this paper, a comparative study of twelve equivalent circuit models for Li-ion batteries is presented, which are selected from state-of-the-art lumped models reported in the literature.

1,463 citations

Journal ArticleDOI
TL;DR: A critical review of the available literature on the major thermal issues for lithium-ion batteries is presented in this article, where specific attention is paid to the effects of temperature and thermal management on capacity/power fade, thermal runaway, and pack electrical imbalance.
Abstract: Lithium-ion batteries are well-suited for fully electric and hybrid electric vehicles due to their high specific energy and energy density relative to other rechargeable cell chemistries. However, these batteries have not been widely deployed commercially in these vehicles yet due to safety, cost, and poor low temperature performance, which are all challenges related to battery thermal management. In this paper, a critical review of the available literature on the major thermal issues for lithium-ion batteries is presented. Specific attention is paid to the effects of temperature and thermal management on capacity/power fade, thermal runaway, and pack electrical imbalance and to the performance of lithium-ion cells at cold temperatures. Furthermore, insights gained from previous experimental and modeling investigations are elucidated. These include the need for more accurate heat generation measurements, improved modeling of the heat generation rate, and clarity in the relative magnitudes of the various thermal effects observed at high charge and discharge rates seen in electric vehicle applications. From an analysis of the literature, the requirements for lithium-ion thermal management systems for optimal performance in these applications are suggested, and it is clear that no existing thermal management strategy or technology meets all these requirements.

1,458 citations

Journal ArticleDOI
TL;DR: A review of the current literature on capacity fade mechanisms can be found in this paper, where the authors describe the information needed and the directions that may be taken to include these mechanisms in advanced lithium-ion battery models.
Abstract: The capacity of a lithium‐ion battery decreases during cycling. This capacity loss or fade occurs due to several different mechanisms which are due to or are associated with unwanted side reactions that occur in these batteries. These reactions occur during overcharge or overdischarge and cause electrolyte decomposition, passive film formation, active material dissolution, and other phenomena. These capacity loss mechanisms are not included in the present lithium‐ion battery mathematical models available in the open literature. Consequently, these models cannot be used to predict cell performance during cycling and under abuse conditions. This article presents a review of the current literature on capacity fade mechanisms and attempts to describe the information needed and the directions that may be taken to include these mechanisms in advanced lithium‐ion battery models.

1,227 citations