scispace - formally typeset
Journal ArticleDOI

A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems

Reads0
Chats0
TLDR
In this article, thermal properties of nanoparticles suspended in refrigerant and lubricating oil of refrigerating systems were reviewed and review results are presented as well, and challenges and future direction of nanofluids/nanorefrigerants have been reviewed and presented in this paper.
Abstract
Recently scientists used nanoparticles in refrigeration systems because of theirs remarkable improvement in thermo-physical, and heat transfer capabilities to enhance the efficiency and reliability of refrigeration and air conditioning system. In this paper thermal–physical properties of nanoparticles suspended in refrigerant and lubricating oil of refrigerating systems were reviewed. Heat transfer performance of different nanorefrigerants with varying concentrations was reviewed and review results are presented as well. Pressure drop and pumping power of a refrigeration system with nanorefrigerants were obtained from different sources and reported in this review. Along with these, pool boiling heat transfer performance of CNT refrigerant was reported. Moreover, challenges and future direction of nanofluids/nanorefrigerants have been reviewed and presented in this paper. Based on results available in the literatures, it has been found that nanorefrigerants have a much higher and strongly temperature-dependent thermal conductivity at very low particle concentrations than conventional refrigerant. This can be considered as one of the key parameters for enhanced performance for refrigeration and air conditioning systems. Because of its superior thermal performances, latest upto date literatures on this property has been summarized and presented in this paper as well. The results indicate that HFC134a and mineral oil with TiO2 nanoparticles works normally and safely in the refrigerator with better performance. The energy consumption of the HFC134a refrigerant using mineral oil and nanoparticles mixture as lubricant saved 26.1% energy with 0.1% mass fraction TiO2 nanoparticles compared to the HFC134a and POE oil system. It was identified that fundamental properties (i.e. density, specific heat capacity, and surface tension) of nanorefrigerants were not experimentally determined yet. It may be noted as well that few barriers and challenges those have been identified in this review must be addressed carefully before it can be fully implemented in refrigeration and air conditioning systems.

read more

Citations
More filters
Journal ArticleDOI

A review of the applications of nanofluids in solar energy

TL;DR: In this article, the authors investigated the effects of nanofluids on the performance of solar collectors and solar water heaters from the efficiency, economic and environmental considerations viewpoints, and made some suggestions to use the nanoparticles in different solar thermal systems such as photovoltaic/thermal systems, solar ponds, solar thermoelectric cells, and so on.
Journal ArticleDOI

Enhancement of heat transfer using nanofluids—An overview

TL;DR: A colloidal mixture of nano-sized particles in a base fluid, called nanofluids, tremendously enhances the heat transfer characteristics of the original fluid, and is ideally suited for practical applications due to its marvelous characteristics.
Journal ArticleDOI

Latest developments on the viscosity of nanofluids

TL;DR: In this paper, a detailed review on theoretical models/correlations of conventional models related to nanofluid viscosity is presented, and the existing experimental results about the Nanofluids viscoities show clearly that viscoity augmented accordingly with an increase of volume concentration and decreased with the temperature rise.
Journal ArticleDOI

Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications

TL;DR: In this article, a review of nanostructured CuxO focusing on their material properties, methods of synthesis and an overview of various applications that have been associated with the nanostructure of the oxides of copper is presented.
Journal Article

Thermal conductivity of nanoparticle suspensions

TL;DR: In this paper, an optical beam deflection technique was used for measurements of the thermal diffusivity of fluid mixtures and suspensions of nanoparticles with a precision of better than 1%.
References
More filters
Journal ArticleDOI

Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Journal ArticleDOI

Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles

TL;DR: In this paper, a transient hot-wire method was used to measure the thermal conductivity of a small amount of nanoparticles and the experimental results showed that these nanoparticles have substantially higher thermal conductivities than the same liquids without nanoparticles.
Journal ArticleDOI

Anomalous thermal conductivity enhancement in nanotube suspensions

TL;DR: In this paper, the authors have produced nanotube-in-oil suspensions and measured their effective thermal conductivity, which is anomalously greater than theoretical predictions and is nonlinear with nanotubes loadings.
Journal ArticleDOI

Conceptions for heat transfer correlation of nanofluids

TL;DR: In this article, the authors proposed two different approaches for deriving heat transfer correlation of the nanofluid, and investigated the mechanism of heat transfer enhancement of the nano-fluid.
Journal ArticleDOI

Heat transfer enhancement of nanofluids

TL;DR: In this article, the authors present a procedure for preparing a nanofluid which is a suspension consisting of nanophase powders and a base liquid, and their TEM photographs are given to illustrate the stability and evenness of suspension.
Related Papers (5)