scispace - formally typeset
Open AccessJournal ArticleDOI

A route to high surface area, porosity and inclusion of large molecules in crystals

Reads0
Chats0
TLDR
The design, synthesis and properties of crystalline Zn4O(1,3,5-benzenetribenzoate)2 are reported, a new metal-organic framework with a surface area estimated at 4,500 m2 g-1 that combines this exceptional level of surface area with an ordered structure that has extra-large pores capable of binding polycyclic organic guest molecules.
Abstract
One of the outstanding challenges in the field of porous materials is the design and synthesis of chemical structures with exceptionally high surface areas Such materials are of critical importance to many applications involving catalysis, separation and gas storage The claim for the highest surface area of a disordered structure is for carbon, at 2,030 m2 g(-1) (ref 2) Until recently, the largest surface area of an ordered structure was that of zeolite Y, recorded at 904 m2 g(-1) (ref 3) But with the introduction of metal-organic framework materials, this has been exceeded, with values up to 3,000 m2 g(-1) (refs 4-7) Despite this, no method of determining the upper limit in surface area for a material has yet been found Here we present a general strategy that has allowed us to realize a structure having by far the highest surface area reported to date We report the design, synthesis and properties of crystalline Zn4O(1,3,5-benzenetribenzoate)2, a new metal-organic framework with a surface area estimated at 4,500 m2 g(-1) This framework, which we name MOF-177, combines this exceptional level of surface area with an ordered structure that has extra-large pores capable of binding polycyclic organic guest molecules--attributes not previously combined in one material

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The Chemistry and Applications of Metal-Organic Frameworks

TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Journal ArticleDOI

The chemistry of graphene oxide

TL;DR: This review will be of value to synthetic chemists interested in this emerging field of materials science, as well as those investigating applications of graphene who would find a more thorough treatment of the chemistry of graphene oxide useful in understanding the scope and limitations of current approaches which utilize this material.
Journal ArticleDOI

Exceptional chemical and thermal stability of zeolitic imidazolate frameworks

TL;DR: Study of the gas adsorption and thermal and chemical stability of two prototypical members, ZIF-8 and -11, demonstrated their permanent porosity, high thermal stability, and remarkable chemical resistance to boiling alkaline water and organic solvents.
Journal ArticleDOI

Carbon Dioxide Capture in Metal–Organic Frameworks

TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
References
More filters
Journal ArticleDOI

Reticular synthesis and the design of new materials

TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Journal ArticleDOI

Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

TL;DR: Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups and can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl.
Journal ArticleDOI

Design and synthesis of an exceptionally stable and highly porous metal-organic framework

TL;DR: In this article, an organic dicarboxylate linker is used in a reaction that gives supertetrahedron clusters when capped with monocarboxyates.
Journal ArticleDOI

Ordered porous materials for emerging applications

TL;DR: The past decade has seen significant advances in the ability to fabricate new porous solids with ordered structures from a wide range of different materials, which has resulted in materials with unusual properties and broadened their application range beyond the traditional use as catalysts and adsorbents.
Journal ArticleDOI

Solvent-Accessible Surfaces of Proteins and Nucleic Acids

TL;DR: A method is presented for analytically calculating a smooth, three-dimensional contour about a molecule, which has been applied in enzymology, rational drug design, immunology, and understanding DNA base sequence recognition.
Related Papers (5)