scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A scanning superconducting quantum interference device with single electron spin sensitivity

TL;DR: It is shown that nanoscale SQUIDs with diameters as small as 46 nm can be fabricated on the apex of a sharp tip, and they can operate over a wide range of magnetic fields, providing a sensitivity of 0.6 μB Hz(-1/2) at 1 T.
Abstract: Nanoscale superconducting quantum interference devices (SQUIDs) fabricated on the apex of a sharp tip can provide spin sensitivities that are nearly two orders of magnitude better than previous SQUID sensors.
Citations
More filters
Journal ArticleDOI
Abstract: "Quantum sensing" describes the use of a quantum system, quantum properties or quantum phenomena to perform a measurement of a physical quantity Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors, or atomic clocks More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions and flux qubits The field is expected to provide new opportunities - especially with regard to high sensitivity and precision - in applied physics and other areas of science In this review, we provide an introduction to the basic principles, methods and concepts of quantum sensing from the viewpoint of the interested experimentalist

1,878 citations

Journal ArticleDOI
TL;DR: The physical principles that allow for magnetic field detection with NV centres are presented and first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences are discussed.
Abstract: The isolated electronic spin system of the nitrogen-vacancy (NV) centre in diamond offers unique possibilities to be employed as a nanoscale sensor for detection and imaging of weak magnetic fields. Magnetic imaging with nanometric resolution and field detection capabilities in the nanotesla range are enabled by the atomic-size and exceptionally long spin-coherence times of this naturally occurring defect. The exciting perspectives that ensue from these characteristics have triggered vivid experimental activities in the emerging field of 'NV magnetometry'. It is the purpose of this article to review the recent progress in high-sensitivity nanoscale NV magnetometry, generate an overview of the most pertinent results of the last years and highlight perspectives for future developments. We will present the physical principles that allow for magnetic field detection with NV centres and discuss first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences.

1,033 citations

Journal ArticleDOI
TL;DR: A review of the application of nitrogen-vacancy (NV) magnetometry to the exploration of condensed matter physics can be found in this article, focusing on its use to study static and dynamic magnetic textures and dynamic current distributions.
Abstract: The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor–sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions. The spin of the nitrogen-vacancy (NV) defect in diamond acts as a sensitive, atomic-sized magnetic field sensor that provides nanoscale access to the properties of condensed matter systems. This Review introduces NV magnetometry and discusses its application to the exploration of static and dynamic magnetism and electric current distributions.

389 citations

Journal ArticleDOI
01 May 2020-Nature
TL;DR: The importance of θ disorder as an unconventional type of disorder enabling the use of twist-angle gradients for bandstructure engineering, for realization of correlated phenomena and for gate-tunable built-in planar electric fields for device applications is established.
Abstract: The recently discovered flat electronic bands and strongly correlated and superconducting phases in magic-angle twisted bilayer graphene (MATBG)1,2 crucially depend on the interlayer twist angle, θ. Although control of the global θ with a precision of about 0.1 degrees has been demonstrated1-7, little information is available on the distribution of the local twist angles. Here we use a nanoscale on-tip scanning superconducting quantum interference device (SQUID-on-tip)8 to obtain tomographic images of the Landau levels in the quantum Hall state9 and to map the local θ variations in hexagonal boron nitride (hBN)-encapsulated MATBG devices with relative precision better than 0.002 degrees and a spatial resolution of a few moire periods. We find a correlation between the degree of θ disorder and the quality of the MATBG transport characteristics and show that even state-of-the-art devices-which exhibit correlated states, Landau fans and superconductivity-display considerable local variation in θ of up to 0.1 degrees, exhibiting substantial gradients and networks of jumps, and may contain areas with no local MATBG behaviour. We observe that the correlated states in MATBG are particularly fragile with respect to the twist-angle disorder. We also show that the gradients of θ generate large gate-tunable in-plane electric fields, unscreened even in the metallic regions, which profoundly alter the quantum Hall state by forming edge channels in the bulk of the sample and may affect the phase diagram of the correlated and superconducting states. We thus establish the importance of θ disorder as an unconventional type of disorder enabling the use of twist-angle gradients for bandstructure engineering, for realization of correlated phenomena and for gate-tunable built-in planar electric fields for device applications.

307 citations

Journal ArticleDOI
TL;DR: A review of recent progress in understanding the hydrodynamic limit of electronic motion in graphene can be found in this paper, where the phase diagram of graphene is discussed, and the inevitable presence of impurities and phonons in experimental systems.
Abstract: Generic interacting many-body quantum systems are believed to behave as classical fluids on long time and length scales. Due to rapid progress in growing exceptionally pure crystals, we are now able to experimentally observe this collective motion of electrons in solid-state systems, including graphene. We present a review of recent progress in understanding the hydrodynamic limit of electronic motion in graphene, written for physicists from diverse communities. We begin by discussing the 'phase diagram' of graphene, and the inevitable presence of impurities and phonons in experimental systems. We derive hydrodynamics, both from a phenomenological perspective and using kinetic theory. We then describe how hydrodynamic electron flow is visible in electronic transport measurements. Although we focus on graphene in this review, the broader framework naturally generalizes to other materials. We assume only basic knowledge of condensed matter physics, and no prior knowledge of hydrodynamics.

250 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the basic principles of modern optical magnetometers, discuss fundamental limitations on their performance, and describe recently explored applications for dynamical measurements of biomagnetic fields, detecting signals in NMR and MRI, inertial rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of nature.
Abstract: Some of the most sensitive methods of measuring magnetic fields use interactions of resonant light with atomic vapour. Recent developments in this vibrant field have led to improvements in sensitivity and other characteristics of atomic magnetometers, benefiting their traditional applications for measurements of geomagnetic anomalies and magnetic fields in space, and opening many new areas previously accessible only to magnetometers based on superconducting quantum interference devices. We review basic principles of modern optical magnetometers, discuss fundamental limitations on their performance, and describe recently explored applications for dynamical measurements of biomagnetic fields, detecting signals in NMR and MRI, inertial rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of nature.

1,489 citations

Journal ArticleDOI
15 Jul 2004-Nature
TL;DR: The long relaxation time of the measured signal suggests that the state of an individual spin can be monitored for extended periods of time, even while subjected to a complex set of manipulations that are part of the MRFM measurement protocol.
Abstract: Magnetic resonance imaging (MRI) is well known as a powerful technique for visualizing subsurface structures with three-dimensional spatial resolution. Pushing the resolution below 1 micro m remains a major challenge, however, owing to the sensitivity limitations of conventional inductive detection techniques. Currently, the smallest volume elements in an image must contain at least 10(12) nuclear spins for MRI-based microscopy, or 10(7) electron spins for electron spin resonance microscopy. Magnetic resonance force microscopy (MRFM) was proposed as a means to improve detection sensitivity to the single-spin level, and thus enable three-dimensional imaging of macromolecules (for example, proteins) with atomic resolution. MRFM has also been proposed as a qubit readout device for spin-based quantum computers. Here we report the detection of an individual electron spin by MRFM. A spatial resolution of 25 nm in one dimension was obtained for an unpaired spin in silicon dioxide. The measured signal is consistent with a model in which the spin is aligned parallel or anti-parallel to the effective field, with a rotating-frame relaxation time of 760 ms. The long relaxation time suggests that the state of an individual spin can be monitored for extended periods of time, even while subjected to a complex set of manipulations that are part of the MRFM measurement protocol.

1,379 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the properties of superconducting weak links is presented, where the authors cover experimental results and theoretical ideas on the properties and properties of weak links, i.e., weak electrical contacts between super-conducting electrodes which exhibit direct conductivity.
Abstract: This review covers experimental results and theoretical ideas on the properties of superconducting weak links, i.e., weak electrical contacts between superconducting electrodes which exhibit direct (non-tunnel-type) conductivity. When the dimensions of such weak links are sufficiently small, the Josephson effect is observed in them, in other words, a single-valued and $2\ensuremath{\pi}$ -periodic relationship exists between the supercurrent ${I}_{s}$ and the phase difference $\ensuremath{\sigma}$ of the electrodes. With increasing dimensions, this relationship has a tendency to deviate gradually from the Josephson behavior. This deviation varies, depending on whether the weak link material is a superconductor or a normal metal. The various known types of weak links are described, and special mention is made of those weak links which are most suitable for physical investigations and have various practical applications. The data on the nonstationary (ac) processes in weak links, when the phase difference varies with time, are analyzed. In conclusion the existing concepts about the processes in weak links are briefly summarized and the most urgent outstanding problems are outlined.

1,350 citations

Journal Article
TL;DR: In this article, the authors reported the detection of an individual electron spin by magnetic resonance force microscopy (MRFM) and achieved a spatial resolution of 25nm in one dimension for an unpaired spin in silicon dioxide.
Abstract: Magnetic resonance imaging (MRI) is well known as a powerful technique for visualizing subsurface structures with three-dimensional spatial resolution. Pushing the resolution below 1 µm remains a major challenge, however, owing to the sensitivity limitations of conventional inductive detection techniques. Currently, the smallest volume elements in an image must contain at least 1012 nuclear spins for MRI-based microscopy, or 107 electron spins for electron spin resonance microscopy. Magnetic resonance force microscopy (MRFM) was proposed as a means to improve detection sensitivity to the single-spin level, and thus enable three-dimensional imaging of macromolecules (for example, proteins) with atomic resolution. MRFM has also been proposed as a qubit readout device for spin-based quantum computers. Here we report the detection of an individual electron spin by MRFM. A spatial resolution of 25 nm in one dimension was obtained for an unpaired spin in silicon dioxide. The measured signal is consistent with a model in which the spin is aligned parallel or anti-parallel to the effective field, with a rotating-frame relaxation time of 760 ms. The long relaxation time suggests that the state of an individual spin can be monitored for extended periods of time, even while subjected to a complex set of manipulations that are part of the MRFM measurement protocol.

1,192 citations

Journal ArticleDOI
TL;DR: A robust method for scanning a single nitrogen-vacancy centre within tens of nanometres from a sample surface that addresses both of these concerns is demonstrated, and is able to image magnetic domains with widths of 25 nm, and demonstrate a magnetic field sensitivity of 56 nT Hz(-1/2) at a frequency of 33 kHz, which is unprecedented for scanning nitrogen-Vacancy centres.
Abstract: The nitrogen-vacancy defect centre in diamond has potential applications in nanoscale electric and magnetic-field sensing, single-photon microscopy, quantum information processing and bioimaging. These applications rely on the ability to position a single nitrogen-vacancy centre within a few nanometres of a sample, and then scan it across the sample surface, while preserving the centre's spin coherence and readout fidelity. However, existing scanning techniques, which use a single diamond nanocrystal grafted onto the tip of a scanning probe microscope, suffer from short spin coherence times due to poor crystal quality, and from inefficient far-field collection of the fluorescence from the nitrogen-vacancy centre. Here, we demonstrate a robust method for scanning a single nitrogen-vacancy centre within tens of nanometres from a sample surface that addresses both of these concerns. This is achieved by positioning a single nitrogen-vacancy centre at the end of a high-purity diamond nanopillar, which we use as the tip of an atomic force microscope. Our approach ensures long nitrogen-vacancy spin coherence times (∼75 µs), enhanced nitrogen-vacancy collection efficiencies due to waveguiding, and mechanical robustness of the device (several weeks of scanning time). We are able to image magnetic domains with widths of 25 nm, and demonstrate a magnetic field sensitivity of 56 nT Hz(-1/2) at a frequency of 33 kHz, which is unprecedented for scanning nitrogen-vacancy centres.

720 citations