scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A SiC CMOS Linear Voltage Regulator for High-Temperature Applications

TL;DR: The first SiC integrated circuit linear voltage regulator is reported in this article, which uses a 20-V supply and generates an output of 15 V, adjustable down to 10 V. The voltage regulator demonstrated load regulations of 1.49% and 9% for a 2-A load at temperatures of 25 and 300 °C, respectively.
Abstract: The first SiC integrated circuit linear voltage regulator is reported. The voltage regulator uses a 20-V supply and generates an output of 15 V, adjustable down to 10 V. It was designed for loads of up to 2 A over a temperature range of 25-225 °C. It was, however, successfully tested up to 300 °C. The voltage regulator demonstrated load regulations of 1.49% and 9% for a 2-A load at temperatures of 25 and 300 °C, respectively. However, the load regulation is less than 2% up to 300 °C for a 1-A load. The line regulation with a 2-A load at 25 and 300 °C was 17 and 296 mV/V, respectively. The regulator was fabricated in a Cree 4H-SiC 2-μm experimental process and consists of 1000, 32/2-μm NMOS depletion MOSFETs as the pass device, an integrated error amplifier with enhancement MOSFETs, and resistor loads, and uses external feedback and compensation networks to ensure operational integrity. It was designed to be integrated with high-voltage vertical power MOSFETs on the same SiC substrate. It also serves as a guide to future attempts for voltage regulation in any type of integrated SiC circuitry.
Citations
More filters
Journal ArticleDOI
01 Aug 2021
TL;DR: In this article, the authors report the monolithic integration of enhancementmode n-channel and p-channel GaN field-effect transistors and the fabrication of GaN-based complementary logic integrated circuits.
Abstract: Owing to its energy efficiency, silicon complementary metal–oxide–semiconductor (CMOS) technology is the current driving force of the integrated circuit industry. Silicon’s narrow bandgap has led to the advancement of wide-bandgap semiconductor materials, such as gallium nitride (GaN), being favoured in power electronics, radiofrequency power amplifiers and harsh environment applications. However, the development of GaN CMOS logic circuits has proved challenging because of the lack of a suitable strategy for integrating n-channel and p-channel field-effect transistors on a single substrate. Here we report the monolithic integration of enhancement-mode n-channel and p-channel GaN field-effect transistors and the fabrication of GaN-based complementary logic integrated circuits. We construct a family of elementary logic gates—including NOT, NAND, NOR and transmission gates—and show that the inverters exhibit rail-to-rail operation, suppressed static power dissipation, high thermal stability and large noise margins. We also demonstrate latch cells and ring oscillators comprising cascading logic inverters. Through the monolithic integration of enhancement-mode n-type and p-type gallium nitride field-effect transistors, complementary integrated circuits including latch circuits and ring oscillators can be created for use in high-power and high-frequency applications.

97 citations

Journal ArticleDOI
TL;DR: In this paper, two SiC vertically oriented planar gate D-MOSFETs were repetitively subjected to pulsed overcurrent conditions to evaluate their failure mode due to this common source of electrical stress.
Abstract: SiC MOSFETs are a leading option for increasing the power density of power electronics; however, for these devices to supersede the Si insulated-gate bipolar transistor, their characteristics have to be further understood. Two SiC vertically oriented planar gate D-MOSFETs rated for 1200 V/150 A were repetitively subjected to pulsed overcurrent conditions to evaluate their failure mode due to this common source of electrical stress. This research supplements recent work that demonstrated the long term reliability of these same devices [1] . Using an RLC pulse-ring-down test bed, these devices hard-switched 600 A peak current pulses, corresponding to a current density of 1500 A/cm2. Throughout testing, static characteristics of the devices such as $B_{{\rm VDSS}}$ , $R_{{\rm DS}({\rm on})}$ , and $V_{{\rm GS}({\rm th})}$ were measured with a high power device analyzer. The experimental results indicated that a conductive path was formed through the gate oxide; TCAD simulations revealed localized heating at the SiC/SiO2 interface as a result of the extreme high current density present in the device's JFET region. However, the high peak currents and repetition rates required to produce the conductive path through the gate oxide demonstrate the robustness of SiC MOSFETs under the pulsed overcurrent conditions common in power electronic applications.

83 citations

Journal ArticleDOI
TL;DR: A prototype set of essential mixed-signal ICs on SiC capable of controlling power switches and a lateral power MESFET able to operate at high temperatures, all embedded on the same chip.
Abstract: This paper is an important step toward the development of complex integrated circuit (IC) control electronics that have to attend to high-temperature environment power applications. We present in premiere a prototype set of essential mixed-signal ICs on SiC capable of controlling power switches and a lateral power MESFET able to operate at high temperatures, all embedded on the same chip. Also, we report for the first time the functionality of standard Si-CMOS topologies on SiC for the master–slave data flip-flop (FF) and data-reset FF digital building blocks designed with MESFETs. Concretely, we present the complete development of SiC-MESFET IC circuitry, able to integrate gate drivers for SiC power devices. This development is based on the mature and stable Tungsten–Schottky interface technology used for the fabrication of stable SiC Schottky diodes for the European Space Agency Mission BepiColombo.

67 citations

Journal ArticleDOI
TL;DR: In this paper, a review examines potential CMOS monolithic and hybrid approaches in a variety of wide bandgap materials for power and RF electronics applications, which can switch large currents and voltages rapidly with low losses.
Abstract: Power and RF electronics applications have spurred massive investment into a range of wide and ultrawide bandgap semiconductor devices which can switch large currents and voltages rapidly with low losses. However, the end systems using these devices are often limited by the parasitics of integrating and driving these chips from the silicon complementary metal–oxide-semiconductor-based design (CMOS) circuitry necessary for complex control logic. For that reason, implementation of CMOS logic directly in the wide bandgap platform has become a way for each maturing material to compete. This review examines potential CMOS monolithic and hybrid approaches in a variety of wide bandgap materials.

53 citations


Cites background from "A SiC CMOS Linear Voltage Regulator..."

  • ...2-μm gate lengths for digital operation show nMOS (pMOS) ON-currents on the scale of 150 mA/mm (40 mA/mm) at 300 ◦C [46], see Fig....

    [...]

  • ...2-μm pMOS and nMOS at 25 ◦C and 300 ◦C (data [46] renormalized to device width)....

    [...]

  • ...[46] describe body contacts and the substrate differently....

    [...]

Journal ArticleDOI
TL;DR: The critical components, namely SiC power devices and modules, gate drives, and passive components, are introduced and comparatively analyzed regarding composition material, physical structure, and packaging technology, as well as MEMS devices.
Abstract: The significant advance of power electronics in today's market is calling for high-performance power conversion systems and MEMS devices that can operate reliably in harsh environments, such as high working temperature. Silicon-carbide (SiC) power electronic devices are featured by the high junction temperature, low power losses, and excellent thermal stability, and thus are attractive to converters and MEMS devices applied in a high-temperature environment. This paper conducts an overview of high-temperature power electronics, with a focus on high-temperature converters and MEMS devices. The critical components, namely SiC power devices and modules, gate drives, and passive components, are introduced and comparatively analyzed regarding composition material, physical structure, and packaging technology. Then, the research and development directions of SiC-based high-temperature converters in the fields of motor drives, rectifier units, DC-DC converters are discussed, as well as MEMS devices. Finally, the existing technical challenges facing high-temperature power electronics are identified, including gate drives, current measurement, parameters matching between each component, and packaging technology.

53 citations

References
More filters
Journal ArticleDOI
07 Nov 2002
TL;DR: It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300/spl deg/C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog VLSI in this temperature range.
Abstract: The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300/spl deg/C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog VLSI in this temperature range. However practical operation of silicon power devices at ambient temperatures above 200/spl deg/C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

863 citations


Additional excerpts

  • ...conductivity to lower switching losses [1]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors proposed a solution to the present bulky external capacitor low-dropout (LDO) voltage regulators with an external capacitorless LDO architecture, where the large external capacitor used in typical LDOs is removed allowing for greater power system integration for system-on-chip (SoC) applications.
Abstract: This paper proposes a solution to the present bulky external capacitor low-dropout (LDO) voltage regulators with an external capacitorless LDO architecture. The large external capacitor used in typical LDOs is removed allowing for greater power system integration for system-on-chip (SoC) applications. A compensation scheme is presented that provides both a fast transient response and full range alternating current (AC) stability from 0- to 50-mA load current even if the output load is as high as 100 pF. The 2.8-V capacitorless LDO voltage regulator with a power supply of 3 V was fabricated in a commercial 0.35-mum CMOS technology, consuming only 65 muA of ground current with a dropout voltage of 200 mV. Experimental results demonstrate that the proposed capacitorless LDO architecture overcomes the typical load transient and ac stability issues encountered in previous architectures.

484 citations

Journal ArticleDOI
07 Nov 2002
TL;DR: The benefits of using SiC in power electronics applications are looked at, the current state of the art of SiC is reviewed, and how SiC can be a strong and viable candidate for future power electronics and systems applications are shown.
Abstract: Silicon offers multiple advantages to power circuit designers, but at the same time suffers from limitations that are inherent to silicon material properties, such as low bandgap energy, low thermal conductivity, and switching frequency limitations. Wide bandgap semiconductors, such as silicon carbide (SiC) and gallium nitride (GaN), provide larger bandgaps, higher breakdown electric field, and higher thermal conductivity. Power semiconductor devices made with SiC and GaN are capable of higher blocking voltages, higher switching frequencies, and higher junction temperatures than silicon devices. SiC is by far the most advanced material and, hence, is the subject of attention from power electronics and systems designers. This paper looks at the benefits of using SiC in power electronics applications, reviews the current state of the art, and shows how SiC can be a strong and viable candidate for future power electronics and systems applications.

454 citations


"A SiC CMOS Linear Voltage Regulator..." refers background in this paper

  • ...footprint improves power density, reliability, and system efficiency due to fewer parasitic elements [4]–[6]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the capability of SiC power semiconductor devices, in particular JFET and Schottky barrier diodes (SBDs), for application in high-temperature power electronics was evaluated.
Abstract: This paper evaluates the capability of SiC power semiconductor devices, in particular JFET and Schottky barrier diodes (SBD) for application in high-temperature power electronics. SiC JFETs and SBDs were packaged in high temperature packages to measure the dc characteristics of these SiC devices at ambient temperatures ranging from 25degC (room temperature) up to 450degC. The results show that both devices can operate at 450degC, which is impossible for conventional Si devices, at the expense of significant derating. The current capability of the SiC SBD does not change with temperature, but as expected the JFET current decreases with rising temperatures. A 100 V, 25 W dc-dc converter is used as an example of a high-temperature power-electronics circuit because of circuit simplicity. The converter is designed and built in accordance with the static characteristics of the SiC devices measured under extremely high ambient temperatures, and then tested up to an ambient temperature of 400degC. The conduction loss of the SiC JFET increases slightly with increasing temperatures, as predicted from its dc characteristics, but its switching characteristics hardly change. Thus, SiC devices are well suited for operation in harsh temperature environments like aerospace and automotive applications.

310 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of hybrid electric vehicles is analyzed using the vehicle simulation software Powertrain System Analysis Toolkit (PSAT), and power loss models of a SiC inverter are incorporated into PSAT powertrain models in order to study the impact of SiC devices on HEVs from a system standpoint and give a direct correlation between the inverter efficiency and weight and the vehicle's fuel economy.
Abstract: The application of silicon carbide (SiC) devices as battery interface, motor controller, etc., in a hybrid electric vehicle (HEV) will be beneficial due to their high-temperature capability, high-power density, and high efficiency. Moreover, the light weight and small volume will affect the whole powertrain system in a HEV and, thus, the performance and cost. In this paper, the performance of HEVs is analyzed using the vehicle simulation software Powertrain System Analysis Toolkit (PSAT). Power loss models of a SiC inverter based on the test results of latest SiC devices are incorporated into PSAT powertrain models in order to study the impact of SiC devices on HEVs from a system standpoint and give a direct correlation between the inverter efficiency and weight and the vehicle's fuel economy. Two types of HEVs are considered. One is the 2004 Toyota Prius HEV, and the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of SiC devices are demonstrated by simulations. Not only the power loss in the motor controller but also those in other components in the vehicle powertrain are reduced. As a result, the system efficiency is improved, and vehicles that incorporate SiC power electronics are predicted to consume less energy and have lower emissions and improved system compactness with a simplified thermal management system. For the PHEV, the benefits are even more distinct; in particular, the size of the battery bank can be reduced for optimum design.

204 citations