scispace - formally typeset
Journal ArticleDOI

A Simplification of the Hartree-Fock Method

John C. Slater
- 01 Feb 1951 - 
- Vol. 81, Iss: 3, pp 385-390
Reads0
Chats0
TLDR
In this article, the Hartree-Fock equations can be regarded as ordinary Schrodinger equations for the motion of electrons, each electron moving in a slightly different potential field, which is computed by electrostatics from all the charges of the system, positive and negative, corrected by the removal of an exchange charge, equal in magnitude to one electron, surrounding the electron whose motion is being investigated.
Abstract
It is shown that the Hartree-Fock equations can be regarded as ordinary Schr\"odinger equations for the motion of electrons, each electron moving in a slightly different potential field, which is computed by electrostatics from all the charges of the system, positive and negative, corrected by the removal of an exchange charge, equal in magnitude to one electron, surrounding the electron whose motion is being investigated By forming a weighted mean of the exchange charges, weighted and averaged over the various electronic wave functions at a given point of space, we set up an average potential field in which we can consider all of the electrons to move, thus leading to a great simplification of the Hartree-Fock method, and bringing it into agreement with the usual band picture of solids, in which all electron are assumed to move in the same field We can further replace the average exchange charge by the corresponding value which we should have in a free-electron gas whose local density is equal to the density of actual charge at the position in question; this results in a very simple expression for the average potential field, which still behaves qualitatively like that of the Hartree-Fock method This simplified field is being applied to problems in atomic structure, with satisfactory results, and is adapted as well to problems of molecules and solids

read more

Citations
More filters
Journal ArticleDOI

New method for calculating the one-particle green's function with application to the electron-gas problem

TL;DR: In this paper, a set of self-consistent equations for the one-electron Green's function have been derived, which correspond to an expansion in a screened potential rather than the bare Coulomb potential.
Journal ArticleDOI

Conceptual density functional theory.

TL;DR: This chapter discusses the development of DFT as a tool for Calculating Atomic andMolecular Properties and its applications, as well as some of the fundamental and Computational aspects.
Journal ArticleDOI

Relativistic regular two‐component Hamiltonians

TL;DR: In this article, potential-dependent transformations are used to transform the four-component Dirac Hamiltonian to effective two-component regular Hamiltonians, which already contain the most important relativistic effects, including spin-orbit coupling.
Book

A Chemist's Guide to Density Functional Theory

TL;DR: A Chemist's Guide to Density Functional Theory should be an invaluable source of insight and knowledge for many chemists using DFT approaches to solve chemical problems.
Journal ArticleDOI

The density functional formalism, its applications and prospects

TL;DR: In this paper, the authors survey the local density functional formalism and some of its applications and discuss the reasons for the successes and failures of the local-density approximation and some modifications.
Related Papers (5)