scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

A Simplified Local Correlation-Based Zero-Equation Transition Model

About: The article was published on 2020-06-15. It has received 1 citations till now. The article focuses on the topics: Zero (complex analysis).
Citations
More filters
References
More filters
Journal ArticleDOI
TL;DR: In this paper, two new two-equation eddy-viscosity turbulence models are presented, which combine different elements of existing models that are considered superior to their alternatives.
Abstract: Two new two-equation eddy-viscosity turbulence models will be presented. They combine different elements of existing models that are considered superior to their alternatives. The first model, referred to as the baseline (BSL) model, utilizes the original k-ω model of Wilcox in the inner region of the boundary layer and switches to the standard k-e model in the outer region and in free shear flows. It has a performance similar to the Wilcox model, but avoids that model's strong freestream sensitivity

15,459 citations

Journal ArticleDOI
TL;DR: In this article, a second-order extension of the Lagrangean method is proposed to integrate the equations of ideal compressible flow, which is based on the integral conservation laws and is dissipative, so that it can be used across shocks.

6,630 citations

Journal ArticleDOI
TL;DR: Langtry et al. as discussed by the authors developed a new correlation-based transition model based strictly on local variables, which is compatible with modern computational fluid dynamics (CFD) approaches, such as unstructured grids and massive parallel execution.
Abstract: A new correlation-based transition model has been developed, which is based strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) approaches, such as unstructured grids and massive parallel execution. The model is based on two transport equations, one for intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models) but form a framework for the implementation of correlation-based models into general-purpose CFD methods. Part I (this part) of this paper gives a detailed description of the mathematical formulation of the model and some of the basic test cases used for model validation, including a two-dimensional turbine blade. Part II (Langtry, R. B., Menter, F. R., Likki, S. R., Suzen, Y. B., Huang, P. G., and Volker, S., 2006, ASME J. Turbomach., 128(3), pp. 423–434) of the paper details a significant number of test cases that have been used to validate the transition model for turbomachinery and aerodynamic applications. The authors believe that the current formulation is a significant step forward in engineering transition modeling, as it allows the combination of correlation-based transition models with general purpose CFD codes.

1,131 citations

Journal ArticleDOI
TL;DR: The main goal of the present paper is to publish the full model and release it to the research community so that it can continue to be further validated and possibly extended or improved.
Abstract: A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics techniques such as unstructured grids and massively parallel execution. The model is based on two transport equations, one for intermittency and one for a transition onset criterion in terms of momentum-thickness Reynolds number. A number of validation papers have been published on the basic formulation of the model. However, until now the full model correlations have not been published. The main goal of the present paper is to publish the full model and release it to the research community so that it can continue to be further validated and possibly extended or improved. Included in this paper are a number of test cases that can be used to validate the implementation of the model in a given computational fluid dynamics code. The authors believe that the current formulation is a significant step forward in engineering transition modeling, as it allows the combination of transition correlations with general-purpose computational fluid dynamics codes. There is a strong potential that the model will allow the first-order effects of transition to be included in everyday industrial computational fluid dynamics simulations.

1,073 citations

Journal ArticleDOI
TL;DR: A time-derivative preconditioning of the Navier-Stokes equations, suitable for both variable and constant density fluids, is developed and is shown to provide accurate steady-state solutions for transonic and low-speed flow of variable density fluids.
Abstract: A time-derivative preconditioning of the Navier-Stokes equations, suitable for both variable and constant density fluids, is developed. The ideas of low-Mach-number preconditioning and artificial compressibility are combined into a unified approach designed to enhance convergence rates of density-based, time-marching schemes for solving flows of incompressible and variable density fluids at all speeds. The preconditioning is coupled with a dual time-stepping scheme implemented within an explicit, multistage algorithm for solving time-accurate flows. The resultant time integration scheme is used in conjunction with a finite volume discretization designed for unstructured, solution-adaptive mesh topologies. This method is shown to provide accurate steady-state solutions for transonic and low-speed flow of variable density fluids. The time-accurate solution of unsteady, incompressible flow is also demonstrated.

925 citations