scispace - formally typeset
Open AccessJournal ArticleDOI

A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA

Reads0
Chats0
TLDR
A simulated annealing based multiobjective optimization algorithm that incorporates the concept of archive in order to provide a set of tradeoff solutions for the problem under consideration that is found to be significantly superior for many objective test problems.
Abstract: 
This paper describes a simulated annealing based multiobjective optimization algorithm that incorporates the concept of archive in order to provide a set of tradeoff solutions for the problem under consideration. To determine the acceptance probability of a new solution vis-a-vis the current solution, an elaborate procedure is followed that takes into account the domination status of the new solution with the current solution, as well as those in the archive. A measure of the amount of domination between two solutions is also used for this purpose. A complexity analysis of the proposed algorithm is provided. An extensive comparative study of the proposed algorithm with two other existing and well-known multiobjective evolutionary algorithms (MOEAs) demonstrate the effectiveness of the former with respect to five existing performance measures, and several test problems of varying degrees of difficulty. In particular, the proposed algorithm is found to be significantly superior for many objective test problems (e.g., 4, 5, 10, and 15 objective problems), while recent studies have indicated that the Pareto ranking-based MOEAs perform poorly for such problems. In a part of the investigation, comparison of the real-coded version of the proposed algorithm is conducted with a very recent multiobjective simulated annealing algorithm, where the performance of the former is found to be generally superior to that of the latter.

read more

Citations
More filters
Journal ArticleDOI

Multiobjective evolutionary algorithms: A survey of the state of the art

TL;DR: This paper surveys the development ofMOEAs primarily during the last eight years and covers algorithmic frameworks such as decomposition-based MOEAs (MOEA/Ds), memetic MOEas, coevolutionary MOE As, selection and offspring reproduction operators, MOE as with specific search methods, MOeAs for multimodal problems, constraint handling and MOE
Book ChapterDOI

Multi-objective Optimization

TL;DR: This chapter discusses the fundamental principles of multi-objective optimization, the differences between multi-Objective optimization and single-objectives optimization, and describes a few well-known classical and evolutionary algorithms for multi- objective optimization.
Journal ArticleDOI

A survey on nature inspired metaheuristic algorithms for partitional clustering

TL;DR: An up-to-date review of all major nature inspired metaheuristic algorithms employed till date for partitional clustering and key issues involved during formulation of various metaheuristics as a clustering problem and major application areas are discussed.
Journal ArticleDOI

Review: Multi-objective optimization methods and application in energy saving

TL;DR: In order to get the final optimal solution in the real-world multi-objective optimization problems, trade-off methods including a priori methods, interactive methods, Pareto-dominated methods and new dominance methods are utilized.
Journal ArticleDOI

Complex Network Clustering by Multiobjective Discrete Particle Swarm Optimization Based on Decomposition

TL;DR: Based on the proposed discrete framework, a multiobjective discrete particle swarm optimization algorithm is proposed to solve the network clustering problem and the decomposition mechanism is adopted.
References
More filters
Journal ArticleDOI

Optimization by Simulated Annealing

TL;DR: There is a deep and useful connection between statistical mechanics and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters), and a detailed analogy with annealing in solids provides a framework for optimization of very large and complex systems.
Journal ArticleDOI

A fast and elitist multiobjective genetic algorithm: NSGA-II

TL;DR: This paper suggests a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties, and modify the definition of dominance in order to solve constrained multi-objective problems efficiently.
Journal ArticleDOI

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images

TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Related Papers (5)