scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

A simulation evaluation of a four-engine jet transport using engine thrust modulation for flightpath control

TL;DR: The use of throttle control laws to provide adequate flying qualities for flight path control in the event of a total loss of conventional flight control surface use was evaluated in this paper, where the results were based on a simulation evaluation by transport research pilots of a B-720 transport with visual display.
Abstract: The use of throttle control laws to provide adequate flying qualities for flight path control in the event of a total loss of conventional flight control surface use was evaluated. The results are based on a simulation evaluation by transport research pilots of a B-720 transport with visual display. Throttle augmentation control laws can provide flight path control capable of landing a transport-type aircraft with up to moderate levels of turbulence. The throttle augmentation mode dramatically improves the pilots' ability to control flight path for the approach and landing flight condition using only throttle modulation. For light turbulence, the average Cooper-Harper pilot rating improved from unacceptable to acceptable (a pilot rating improvement of 4.5) in going from manual to augmented control. The low frequency response characteristics of the engines require a considerably different piloting technique. The various techniques used by the pilot resulted in considerable scatter in data. Many pilots readily adapted to a good piloting technique while some had difficulty. A new viable approach is shown to provide independent means of redundancy of transport aircraft flight path control.

Content maybe subject to copyright    Report

Citations
More filters
01 Sep 1996
TL;DR: Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure and was used to recover from a severe upset condition, descend, and land.
Abstract: A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

49 citations

01 May 1998
TL;DR: In this paper, the NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control, which can operate without modifications to engine control systems.
Abstract: With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.

46 citations

Journal ArticleDOI
TL;DR: In this article, a large, civilian, multi-engine transport MD-11 airplane control system was recently modie ed to perform as an emergency backup controller using engine thrust only.
Abstract: A large, civilian, multiengine transport MD-11 airplane control system was recently modie ed to perform as an emergency backup controller using engine thrust only. The emergency backup system, referred to as the propulsion-controlled aircraft (PCA)system, would be used if a majorprimary e ight control system fails. To allow for longitudinal- and lateral-directional control, the PCA system requires at least two engines and is implemented through software modie cations. A e ight-test program was conducted to evaluate the PCA system high-altitude e ying characteristics and to demonstrate its capacity to perform safe landings. The cruise e ight conditions, several low approaches, and four landings without any aerodynamic e ight control surface movement were demonstrated; however, only one landing is presented. Results that show satisfactory performance of the PCA system in the longitudinal axis are presented. Test results indicate that the lateral-directional axis of the system performed well at high altitude but was sluggish and prone to thermal upsets during landing approaches. Flight-test experiences and test techniques are also discussed, with emphasis on the lateral-directional axis because of the dife culties encountered in e ight test.

40 citations

Book
02 Aug 2013
TL;DR: In this paper, a history of accidents or incidents in which some or all flight controls were lost, manual TOC results for a wide range of airplanes from simulation and flight, and suggested techniques for flying with throttles only and making a survivable landing.
Abstract: If normal aircraft flight controls are lost, emergency flight control may be attempted using only engines thrust. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. Flight test and simulation results on many airplanes have shown that pilot manipulation of throttles is usually adequate to maintain up-and-away flight, but is most often not capable of providing safe landings. There are techniques that will improve control and increase the chances of a survivable landing. This paper reviews the principles of throttles-only control (TOC), a history of accidents or incidents in which some or all flight controls were lost, manual TOC results for a wide range of airplanes from simulation and flight, and suggested techniques for flying with throttles only and making a survivable landing.

39 citations

Journal ArticleDOI
TL;DR: In this article, an incremental type sensor based backstepping (SBB) control approach, based on singular perturbation theory and Tikhonov's theorem, has been proposed.
Abstract: Recently, an incremental type sensor based backstepping (SBB) control approach, based on singular perturbation theory and Tikhonov’s theorem, has been proposed. This Lyapunov function based method uses measurements of control variables and less model knowledge, and it is not susceptible to the model uncertainty caused by fault scenarios. In this paper, the SBB method has been implemented on a fixed wing aircraft with its focus on handling structural changes caused by damages. A new hybrid autopilot flight controller has been developed for a Boeing 747-200 aircraft after combining nonlinear dynamic inversion (NDI) with SBB control approach. Two benchmarks for fault tolerant flight control (FTFC), named rudder runaway and engine separation, are employed to evaluate the proposed method. The simulation results show that the proposed control approach leads to a zero tracking-error performance in nominal condition and guarantees the stability of the closed-loop system under failures as long as the reference commands are located in the safe flight envelope.

39 citations


Cites methods from "A simulation evaluation of a four-e..."

  • ...A propulsioncontrolled aircraft (PCA) system has been developed by the NASA Dryden Research Center, and was first evaluated on a piloted B-720 simulation [12]....

    [...]

References
More filters
Proceedings ArticleDOI
01 Sep 1991
TL;DR: In this paper, a preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft, including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter.
Abstract: A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.

16 citations

01 Nov 1988
TL;DR: In this paper, a large, four-engine, remotely piloted jet transport airplane was used for controlled impact demonstration (CID) program using a large onboard PB-20D autopilot.
Abstract: The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.

8 citations