scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A smooth future

01 May 2011-Nature Materials (Nature Research)-Vol. 10, Iss: 5, pp 334-337
TL;DR: Research on superhydrophobic materials has mostly focused on their extreme non-wettability, but the implications of superHydrophobicity beyond wetting, particularly for transport phenomena, remain largely unexplored.
Abstract: Research on superhydrophobic materials has mostly focused on their extreme non-wettability. However, the implications of superhydrophobicity beyond wetting, in particular for transport phenomena, remain largely unexplored.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
22 Sep 2011-Nature
TL;DR: A strategy to create self-healing, slippery liquid-infused porous surface(s) (SLIPS) with exceptional liquid- and ice-repellency, pressure stability and enhanced optical transparency, applicable to various inexpensive, low-surface-energy structured materials (such as porous Teflon membrane).
Abstract: Inspired by the insect-eating Nepenthes pitcher plant, which snares its prey on a surface lubricated by a remarkably slippery aqueous secretion, Joanna Aizenberg and colleagues have synthesized omniphobic surfaces that can self-repair and function at high pressures. Their 'slippery liquid-infused porous surfaces' (or SLIPS) exhibit almost perfect slipperiness towards polar, organic and complex liquids. SLIPS function under extreme conditions, are easily constructed from inexpensive materials and can be endowed with other useful characteristics, such as enhanced optical transparency, through the selection of appropriate substrates and lubricants. Ultra-slippery surfaces of this type might find application in biomedical fluid handling, fuel transport, antifouling, anti-icing, optical imaging and elsewhere. Creating a robust synthetic surface that repels various liquids would have broad technological implications for areas ranging from biomedical devices and fuel transport to architecture but has proved extremely challenging1. Inspirations from natural nonwetting structures2,3,4,5,6, particularly the leaves of the lotus, have led to the development of liquid-repellent microtextured surfaces that rely on the formation of a stable air–liquid interface7,8,9. Despite over a decade of intense research, these surfaces are, however, still plagued with problems that restrict their practical applications: limited oleophobicity with high contact angle hysteresis9, failure under pressure10,11,12 and upon physical damage1,7,11, inability to self-heal and high production cost1,11. To address these challenges, here we report a strategy to create self-healing, slippery liquid-infused porous surface(s) (SLIPS) with exceptional liquid- and ice-repellency, pressure stability and enhanced optical transparency. Our approach—inspired by Nepenthes pitcher plants13—is conceptually different from the lotus effect, because we use nano/microstructured substrates to lock in place the infused lubricating fluid. We define the requirements for which the lubricant forms a stable, defect-free and inert ‘slippery’ interface. This surface outperforms its natural counterparts2,3,4,5,6 and state-of-the-art synthetic liquid-repellent surfaces8,9,14,15,16 in its capability to repel various simple and complex liquids (water, hydrocarbons, crude oil and blood), maintain low contact angle hysteresis (<2.5°), quickly restore liquid-repellency after physical damage (within 0.1–1 s), resist ice adhesion, and function at high pressures (up to about 680 atm). We show that these properties are insensitive to the precise geometry of the underlying substrate, making our approach applicable to various inexpensive, low-surface-energy structured materials (such as porous Teflon membrane). We envision that these slippery surfaces will be useful in fluid handling and transportation, optical sensing, medicine, and as self-cleaning and anti-fouling materials operating in extreme environments.

3,084 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the fundamental physico-chemical hydrodynamics that arise when droplets, immiscible with the lubricant, are placed on and allowed to move along these surfaces.
Abstract: Non-wetting surfaces containing micro/nanotextures impregnated with lubricating liquids have recently been shown to exhibit superior non-wetting performance compared to superhydrophobic surfaces that rely on stable air–liquid interfaces. Here we examine the fundamental physico-chemical hydrodynamics that arise when droplets, immiscible with the lubricant, are placed on and allowed to move along these surfaces. We find that these four-phase systems show novel contact line morphology comprising a finite annular ridge of the lubricant pulled above the surface texture and consequently as many as three distinct 3-phase contact lines. We show that these distinct morphologies not only govern the contact line pinning that controls droplets' initial resistance to movement but also the level of viscous dissipation and hence their sliding velocity once the droplets begin to move.

829 citations

Journal ArticleDOI
TL;DR: This work shows that a class of ceramics comprising the entire lanthanide oxide series, ranging from ceria to lutecia, is intrinsically hydrophobic, and attributes their hydrophobicity to their unique electronic structure, which inhibits hydrogen bonding with interfacial water molecules.
Abstract: Metallic and ceramic surfaces can be rendered hydrophobic through a combination of multiscale surface structures and polymeric modifiers, but the imparted hydrophobicity is not robust to harsh environments. It is now shown that the lanthanide oxide series—a class of ceramics—is intrinsically hydrophobic as a result of their unique electronic structure, even after exposure to high temperatures and abrasive wear.

579 citations

Journal ArticleDOI
TL;DR: It is shown that a graded mechanical stimulus can be directly translated into finely tuned, dynamic adjustments of optical transparency and wettability and should make possible the rational design of tunable, multifunctional adaptive materials for a broad range of applications.
Abstract: Materials that adapt dynamically to environmental changes are currently limited to two-state switching of single properties, and only a small number of strategies that may lead to materials with continuously adjustable characteristics have been reported. Here we introduce adaptive surfaces made of a liquid film supported by a nanoporous elastic substrate. As the substrate deforms, the liquid flows within the pores, causing the smooth and defect-free surface to roughen through a continuous range of topographies. We show that a graded mechanical stimulus can be directly translated into finely tuned, dynamic adjustments of optical transparency and wettability. In particular, we demonstrate simultaneous control of the film's transparency and its ability to continuously manipulate various low-surface-tension droplets from free-sliding to pinned. This strategy should make possible the rational design of tunable, multifunctional adaptive materials for a broad range of applications.

465 citations

Journal ArticleDOI
TL;DR: It is shown that lubricant-infused textured surfaces with uniform nanofeatures provide the most shear-tolerant liquid-repellent behavior, unlike lotus leaf-inspired superhydrophobic surfaces, which generally favor hierarchical structures for improved pressure stability and low contact angle hysteresis.
Abstract: Lubricant-infused textured solid substrates are gaining remarkable interest as a new class of omni-repellent nonfouling materials and surface coatings. We investigated the effect of the length scale and hierarchy of the surface topography of the underlying substrates on their ability to retain the lubricant under high shear conditions, which is important for maintaining nonwetting properties under application-relevant conditions. By comparing the lubricant loss, contact angle hysteresis, and sliding angles for water and ethanol droplets on flat, microscale, nanoscale, and hierarchically textured surfaces subjected to various spinning rates (from 100 to 10 000 rpm), we show that lubricant-infused textured surfaces with uniform nanofeatures provide the most shear-tolerant liquid-repellent behavior, unlike lotus leaf-inspired superhydrophobic surfaces, which generally favor hierarchical structures for improved pressure stability and low contact angle hysteresis. On the basis of these findings, we present gen...

438 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present an attempt towards a unified picture with special emphasis on certain features of "dry spreading": (a) the final state of a spreading droplet need not be a monomolecular film; (b) the spreading drop is surrounded by a precursor film, where most of the available free energy is spent; and (c) polymer melts may slip on the solid and belong to a separate dynamical class, conceptually related to the spreading of superfluids.
Abstract: The wetting of solids by liquids is connected to physical chemistry (wettability), to statistical physics (pinning of the contact line, wetting transitions, etc.), to long-range forces (van der Waals, double layers), and to fluid dynamics. The present review represents an attempt towards a unified picture with special emphasis on certain features of "dry spreading": (a) the final state of a spreading droplet need not be a monomolecular film; (b) the spreading drop is surrounded by a precursor film, where most of the available free energy is spent; and (c) polymer melts may slip on the solid and belong to a separate dynamical class, conceptually related to the spreading of superfluids.

6,042 citations

Journal ArticleDOI
07 Dec 2007-Science
TL;DR: It is shown how a third factor, re-entrant surface curvature, in conjunction with chemical composition and roughened texture, can be used to design surfaces that display extreme resistance to wetting from a number of liquids with low surface tension, including alkanes such as decane and octane.
Abstract: Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces-those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water-are extremely rare. Calculations suggest that creating such a surface would require a surface energy lower than that of any known material. We show how a third factor, re-entrant surface curvature, in conjunction with chemical composition and roughened texture, can be used to design surfaces that display extreme resistance to wetting from a number of liquids with low surface tension, including alkanes such as decane and octane.

2,657 citations

Journal ArticleDOI
TL;DR: In this article, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid is examined, while the hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film.
Abstract: Wetting phenomena are ubiquitous in nature and technology. A solid substrate exposed to the environment is almost invariably covered by a layer of fluid material. In this review, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid. Depending on the nature of the surface forces involved, different scenarios for wetting phase transitions are possible; recent progress allows us to relate the critical exponents directly to the nature of the surface forces which lead to the different wetting scenarios. Thermal fluctuation effects, which can be greatly enhanced for wetting of geometrically or chemically structured substrates, and are much stronger in colloidal suspensions, modify the adsorption singularities. Macroscopic descriptions and microscopic theories have been developed to understand and predict wetting behavior relevant to microfluidics and nanofluidics applications. Then the dynamics of wetting is examined. A drop, placed on a substrate which it wets, spreads out to form a film. Conversely, a nonwetted substrate previously covered by a film dewets upon an appropriate change of system parameters. The hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film only. Recent theoretical, experimental, and numerical progress in the description of moving contact line dynamics are reviewed, and its relation to the thermodynamics of wetting is explored. In addition, recent progress on rough surfaces is surveyed. The anchoring of contact lines and contact angle hysteresis are explored resulting from surface inhomogeneities. Further, new ways to mold wetting characteristics according to technological constraints are discussed, for example, the use of patterned surfaces, surfactants, or complex fluids.

2,501 citations

Journal ArticleDOI
TL;DR: The importance of roughness and water-repellency, respectively, as the basis of an anti-adhesive, self-cleaning surface, in comparison to other functions of microstructures, is discussed.

2,482 citations

Journal ArticleDOI
TL;DR: The origins of water-repellent surfaces are discussed, examining how size and shape of surface features are used to control surface characteristics, in particular how techniques have progressed to form multi-scaled roughness to mimic the lotus leaf effect.
Abstract: Research into extreme water-repellent surfaces began many decades ago, although it was only relatively recently that the term superhydrophobicity appeared in literature Here we review the work on the preparation of superhydrophobic surfaces, with focus on the different techniques used and how they have developed over the years, with particular focus on the last two years We discuss the origins of water-repellent surfaces, examining how size and shape of surface features are used to control surface characteristics, in particular how techniques have progressed to form multi-scaled roughness to mimic the lotus leaf effect There are notable differences in the terminology used to describe the varying properties of water-repellent surfaces, so we suggest some key definitions

1,526 citations