scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A stable and easily prepared catalyst for the enantioselective reduction of ketones. Applications to multistep syntheses

01 Dec 1987-Journal of the American Chemical Society (American Chemical Society)-Vol. 109, Iss: 25, pp 7925-7926
TL;DR: In this paper, the authors described a new method for the catalytic enantioselective reduction of ketones to chiral secondary alcohols, where the stoichiometric reagent in the reduction is borane and the catalyst is a chiral oxazaborolidine such as 1 (0.05-0.1 molfmol of ketone).
Abstract: We have recently described a new method for the catalytic enantioselective reduction of ketones to chiral secondary alcohols.' The stoichiometric reagent in the reduction is borane (usually 0.6 molfmol of ketone), and the catalyst is a chiral oxazaborolidine such as 1 (0.05-0.1 molfmol of ketone). Excellent enantioselectivities, easy recoverability of the chiral catalyst predecessor, near quantitative yields, short reaction times (a few minutes at 23 \"C), and predictability of the absolute configuration of the product contribute to the outstanding utility of this (CBS') process. This paper reports several subsequent developments in this area with respect to improved practicality and important applications. In contrast to 1 which is both air and moisture sensitive, the B-methylated oxazaborolidine 2 can be stored in closed containers at room temperature and weighed or transferred in air. Catalyst 2 is also much more easily prepared than 1. Reaction of (S)-
Citations
More filters
Journal ArticleDOI
TL;DR: The newly devised [RuCl(2)(phosphane)(2)(1,2-diamine)] complexes are excellent precatalysts for homogeneous hydrogenation of simple ketones which lack any functionality capable of interacting with the metal center.
Abstract: Hydrogenation is a core technology in chemical synthesis. High rates and selectivities are attainable only by the coordination of structurally well-designed catalysts and suitable reaction conditions. The newly devised [RuCl(2)(phosphane)(2)(1,2-diamine)] complexes are excellent precatalysts for homogeneous hydrogenation of simple ketones which lack any functionality capable of interacting with the metal center. This catalyst system allows for the preferential reduction of a C=O function over a coexisting C=C linkage in a 2-propanol solution containing an alkaline base. The hydrogenation tolerates many substituents including F, Cl, Br, I, CF(3), OCH(3), OCH(2)C(6)H(5), COOCH(CH(3))(2), NO(2), NH(2), and NRCOR as well as various electron-rich and -deficient heterocycles. Furthermore, stereoselectivity is easily controlled by the electronic and steric properties (bulkiness and chirality) of the ligands as well as the reaction conditions. Diastereoselectivities observed in the catalytic hydrogenation of cyclic and acyclic ketones with the standard triphenylphosphane/ethylenediamine combination compare well with the best conventional hydride reductions. The use of appropriate chiral diphosphanes, particularly BINAP compounds, and chiral diamines results in rapid and productive asymmetric hydrogenation of a range of aromatic and heteroaromatic ketones and gives a consistently high enantioselectivity. Certain amino and alkoxy ketones can be used as substrates. Cyclic and acyclic alpha,beta-unsaturated ketones can be converted into chiral allyl alcohols of high enantiomeric purity. Hydrogenation of configurationally labile ketones allows for the dynamic kinetic discrimination of diastereomers, epimers, and enantiomers. This new method shows promise in the practical synthesis of a wide variety of chiral alcohols from achiral and chiral ketone substrates. Its versatility is manifested by the asymmetric synthesis of some biologically significant chiral compounds. The high rate and carbonyl selectivity are based on nonclassical metal-ligand bifunctional catalysis involving an 18-electron amino ruthenium hydride complex and a 16-electron amido ruthenium species.

1,630 citations

Journal ArticleDOI
TL;DR: Gerhard Bringmann's research interests focus on the field of analytical, synthetic, and computational natural product chemistry, i.e., on axially chiral biaryls, which is characterized by a broad structural diversity.
Abstract: Intellectual curiosity has always been one of the major driving forces leading to new advances in chemistry. At the onset of the 20th century, the fact that biaryls could be optically active even if lacking asymmetrically substituted carbon atoms arose interest, hinting at a novel type of stereomerism. It took quite a while (and some bizarre explanations)1 until in 1922 Christie and Kenner2 first correctly recognized that the phenomenon was the consequence of a hindered rotation about the aryl-aryl single bondshence termed atropisomerism by Kuhn. Still, no particular attention was initially paid to this class of stereoisomers until enantiomerically pure biaryls, such as BINAP (1),3 were found to be excellent ligands in asymmetric catalysis and until the chiral biaryl unit was recognized as the decisive structural element of many natural products (Figure 1).4,5 With the modern screening techniques and the bioassayguided search for novel compounds, the number of isolated axially chiral natural biaryls is steadily increasing.4 This class of secondary metabolites is characterized by a broad structural diversity, reaching from relatively simple molecules like the C2-symmetric biphenyl 2, which solely contains the element of axial chirality,6 to more complex compounds, like, e.g., the dimeric naphthylisoquinoline alkaloids michellamine A [(P,P)-3] and its axial epimer (i.e., its atropodiastereomer), michellamine B [(P,M)-3],7,8 which possess even three biaryl axes, of which the two outer ones are stereogenic, while * To whom correspondence should be addressed. E-mail: bringmann@ chemie.uni-wuerzburg.de; breuning@chemie.uni-wuerzburg.de. † These authors contributed equally to this work. ‡ Present address: Institute of Organic Chemistry, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany. § Present address: Kekulé Institute of Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk Str. 1, 53121 Bonn, Germany. Gerhard Bringmann was born in 1951 and studied chemistry in Gie en and Münster, Germany. After his Ph.D. with Prof. B. Franck in 1978 and postdoctoral studies with Prof. Sir D. H. R. Barton in Gif-sur-Yvette (France), he passed his habilitation at the University of Münster in 1984. In 1986, he received offers for full professorships of Organic Chemistry at the Universities of Vienna and Würzburg, of which he accepted the latter in 1987. In 1998, he was offered the position of director at the Leibniz Institute of Plant Biochemistry in Halle, which he declined. His research interests focus on the field of analytical, synthetic, and computational natural product chemistry, i.e., on axially chiral biaryls. He received several prizes and awards, among them the Otto-Klung Award in chemistry (1988), the Prize for Good Teaching of the Free State of Bavaria (1999), the Adolf-Windaus Medal (2006), the Honorary Doctorate of the University of Kinshasa (2006), the Paul-J.-Scheuer Award (2007), and the Honorary Guest Professorship of Peking University (2008). Chem. Rev. 2011, 111, 563–639 563

936 citations

Journal ArticleDOI
E. J. Corey1
TL;DR: Research by this group on the development and understanding of enantioselective versions of the Diels-Alder reactions is described, based on presentations given first at the University of Cologne, Germany, then at the Roger Adams Award Symposium, and later at the Bürgenstock Conference of 2001.
Abstract: One hundred years after the birth of Kurt Alder and seventy-five years after the discovery of his famous reaction, one of the most important and fascinating transformations in chemistry, research on that process continues to surprise, excite, delight, and inform the chemical community. This article is based on presentations given first at the University of Cologne, Germany (Kurt Alder lecture, 1992), then at the Roger Adams Award Symposium (1993), and later at the Burgenstock Conference of 2001, and describes research by our group on the development and understanding of enantioselective versions of the Diels-Alder reactions. The elements of this review include (1) development of new chiral Lewis acid catalysts for highly enantioselective (>25:1) [4+2] cycloadditions; (2) the fine mechanistic details and pre-transition-state assemblies of these reactions; (3) the fundamental understanding of catalytic activity and enantioselectivity for highly enantioselective Diels-Alder processes; and (4) applications to the synthesis of complex molecules. The range and power of the Diels-Alder reaction have steadily increased over seven decades. The end of this remarkable development is not in sight, a high compliment to this field of Science and to its great inventor.

794 citations

References
More filters
Book
01 Jun 1979
TL;DR: In this article, a few moment to read a book even only few pages is recommended, even if it is not obligation and force for everybody, reading book becomes a choice of your different characteristics.
Abstract: Spend your few moment to read a book even only few pages. Reading book is not obligation and force for everybody. When you don't want to read, you can get punishment from the publisher. Read a book becomes a choice of your different characteristics. Many people with reading habit will always be enjoyable to read, or on the contrary. For some reasons, this molybdenum and molybdenum containing enzymes tends to be the representative book in this website.

294 citations