scispace - formally typeset

Journal ArticleDOI

A study of the microstructural evolution during selective laser melting of Ti–6Al–4V

01 May 2010-Acta Materialia (Pergamon)-Vol. 58, Iss: 9, pp 3303-3312

Abstract: Selective laser melting (SLM) is an additive manufacturing technique in which functional, complex parts can be created directly by selectively melting layers of powder. This process is characterized by highly localized high heat inputs during very short interaction times and will therefore significantly affect the microstructure. In this research, the development of the microstructure of the Ti–6Al–4V alloy processed by SLM and the influence of the scanning parameters and scanning strategy on this microstructure are studied by light optical microscopy. The martensitic phase is present, and due to the occurrence of epitaxial growth, elongated grains emerge. The direction of these grains is directly related to the process parameters. At high heat inputs it was also found that the intermetallic phase Ti3Al is precipitated during the process.
Topics: Selective laser melting (61%), Microstructure (56%), Titanium alloy (52%), Intermetallic (51%), Optical microscope (51%)
Citations
More filters

Journal ArticleDOI
Tarasankar Debroy1, Huiliang Wei1, J.S. Zuback1, T. Mukherjee1  +6 moreInstitutions (4)
Abstract: Since its inception, significant progress has been made in understanding additive manufacturing (AM) processes and the structure and properties of the fabricated metallic components. Because the field is rapidly evolving, a periodic critical assessment of our understanding is useful and this paper seeks to address this need. It covers the emerging research on AM of metallic materials and provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts. The uniqueness of this review includes substantive discussions on refractory alloys, precious metals and compositionally graded alloys, a succinct comparison of AM with welding and a critical examination of the printability of various engineering alloys based on experiments and theory. An assessment of the status of the field, the gaps in the scientific understanding and the research needs for the expansion of AM of metallic components are provided.

2,278 citations


Journal ArticleDOI
15 Sep 2016-Acta Materialia
Abstract: Additive Manufacturing (AM), the layer-by layer build-up of parts, has lately become an option for serial production. Today, several metallic materials including the important engineering materials steel, aluminium and titanium may be processed to full dense parts with outstanding properties. In this context, the present overview article describes the complex relationship between AM processes, microstructure and resulting properties for metals. It explains the fundamentals of Laser Beam Melting, Electron Beam Melting and Laser Metal Deposition, and introduces the commercially available materials for the different processes. Thereafter, typical microstructures for additively manufactured steel, aluminium and titanium are presented. Special attention is paid to AM specific grain structures, resulting from the complex thermal cycle and high cooling rates. The properties evolving as a consequence of the microstructure are elaborated under static and dynamic loading. According to these properties, typical applications are presented for the materials and methods for conclusion.

1,782 citations


Journal ArticleDOI
Abstract: Additive manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire or sheets in a process that proceeds layer by layer. Many techniques (using many different names) have been developed to accomplish this via melting or solid-state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Only a few alloys have been developed for commercial production, but recent efforts are presented as a path for the ongoing development of new materials for AM processes.

1,200 citations


Journal ArticleDOI
15 Apr 2016-Acta Materialia
Abstract: This study demonstrates the significant effect of the recoil pressure and Marangoni convection in laser powder bed fusion (L-PBF) of 316L stainless steel. A three-dimensional high fidelity powder-scale model reveals how the strong dynamical melt flow generates pore defects, material spattering (sparking), and denudation zones. The melt track is divided into three sections: a topological depression, a transition and a tail region, each being the location of specific physical effects. The inclusion of laser ray-tracing energy deposition in the powder-scale model improves over traditional volumetric energy deposition. It enables partial particle melting, which impacts pore defects in the denudation zone. Different pore formation mechanisms are observed at the edge of a scan track, at the melt pool bottom (during collapse of the pool depression), and at the end of the melt track (during laser power ramp down). Remedies to these undesirable pores are discussed. The results are validated against the experiments and the sensitivity to laser absorptivity is discussed.

1,104 citations


Journal ArticleDOI
Abstract: The present work shows that optimization of mechanical properties via heat treatment of parts produced by Selective Laser Melting (SLM) is profoundly different compared to conventionally processed Ti6Al4V. In order to obtain optimal mechanical properties, specific treatments are necessary due to the specific microstructure resulting from the SLM process. SLM is an additive manufacturing technique through which components are built by selectively melting powder layers with a focused laser beam. The process is characterized by short laser-powder interaction times and localized high heat input, which leads to steep thermal gradients, rapid solidification and fast cooling. In this research, the effect of several heat treatments on the microstructure and mechanical properties of Ti6Al4V processed by SLM is studied. A comparison is made with the effect of these treatments on hot forged and subsequently mill annealed Ti6Al4V with an original equiaxed microstructure. For SLM produced parts, the original martensite α′ phase is converted to a lamellar mixture of α and β for heat treating temperatures below the β-transus (995 °C), but features of the original microstructure are maintained. Treated above the β-transus, extensive grain growth occurs and large β grains are formed which transform to lamellar α + β upon cooling. Post treating at 850 °C for 2 h, followed by furnace cooling increased the ductility of SLM parts to 12.84 ± 1.36%, compared to 7.36 ± 1.32% for as-built parts.

983 citations


References
More filters

Book
01 Dec 1994-
Abstract: Comprehensive datasheets on more than 60 titanium alloys More than 200 pages on metallurgy and fabrication procedures Input from more than 50 contributors from several countries Careful editorial review for accuracy and usefulness Materials Properties Handbook: Titanium Alloys provides a data base for information on titanium and its alloys, and the selection of specific alloys for specific applications The most comprehensive titanium data package ever assembled provides extensive information on applications, physical properties, corrosion, mechanical properties (including design allowances where available), fatigue, fracture properties, and elevated temperature properties The appropriate specifications for each alloy are included This international effort has provided a broad information base that has been compiled and reviewed by leading experts within the titanium industry, from several countries, encompassing numerous technology areas Inputs have been obtained from the titanium industry, fabricators, users, government and academia This up-to-date package covers information from almost the inception of the titanium industry, in the 1950s, to mid-1992 The information, organized by alloy, makes this exhaustive collection an easy-to-use data base at your fingertips, which generally includes all the product forms for each alloy The 60-plus data sheets supply not only extensive graphical and tabular information on properties, but the datasheets also describe or illustrate important factors which would aid in the selection of the proper alloy or heat treatment The datasheets are further supplemented with back-ground information on the metallurgy and fabrication characteristics of titanium alloys An especially extensive coverage of properties, processing and metallurgy is provided in the datasheet for the workhorse of the titanium industry, Ti-6Al-4V This compendium includes the newest alloys made public even those still under development In many cases, key references are included for further information on a given subject Comprehensive datasheets provide extensive information on: Applications, Specifications, Corrosion, Mechanical Design Properties, Fatigue and Fracture

2,208 citations


Journal ArticleDOI
Igor Yadroitsev1, Ph. Bertrand1, I. Smurov1Institutions (1)
Abstract: Selective laser sintering/melting (SLS/SLM) technology is used for manufacturing net-shaped objects from commercial Inox 904L powder with ≤20 μm particle size. Experiments were carried out on PHENIX-PM100 machine equipped with a 50 W cw fiber laser. Powder is layered by a roller over the surface of a 100 mm-diameter build cylinder. Optimal parameters of layer thickness and power input per unit speed for SLM were determined. It was shown that the greater the value of P / V ratio is, the larger is the remelted line (called as “vector”). Influence of the shifting of consecutive single vectors on the process of forming the first layer was studied. Different strategies for forming objects with less than 1 mm-sized inner structures were tested, as, for example, forming a 20 mm × 20 mm × 5 mm box with 140 μm-thick inner compartment walls.

484 citations


Journal ArticleDOI
01 Mar 2006-Biomaterials
TL;DR: The DLF-Ti-6Al-4V approach proved to be efficient and could be further advanced in the field of hard tissue biomaterials and matched American Society of Testing and Materials (ASTM) specifications for the usage of this alloy as medical material.
Abstract: Direct laser forming (DLF) is a rapid prototyping technique which enables prompt modelling of metal parts with high bulk density on the base of individual three-dimensional data, including computer tomography models of anatomical structures. In our project, we tested DLF-produced material on the basis of the titanium alloy Ti-6Al-4V for its applicability as hard tissue biomaterial. To this end, we investigated mechanical and structural properties of DLF-Ti-6Al-4V. While the tensile and yield strengths of untreated DLF alloy ranged beyond 1000 MPa, a breaking elongation of 6.5+/-0.6% was determined for this material. After an additional post-DLF annealing treatment, this parameter was increased two-fold to 13.0+/-0.6%, while tensile and yield strengths were reduced by approx. 8%. A Young's modulus of 118.000+/-2.300 MPa was determined for post-DLF annealed Ti-6Al-4V. All data gained from tensile testing of post-DLF annealed Ti-6Al-4V matched American Society of Testing and Materials (ASTM) specifications for the usage of this alloy as medical material. Rotating bending tests revealed that the fatigue profile of post-DLF annealed Ti-6Al-4V was comparable to casted/hot isostatic pressed alloy. We characterized the structure of non-finished DLF-Ti-6Al-4V by scanning electron microscopy and observed a surface-associated layer of particles, which was removable by sandblasting as a finishing step. We manufactured porous specimens with nominal pore diameters of 500, 700 and 1000 microm. The diameters were reduced by the used DLF processing by approx. 300 microm. In an in vitro investigation, we cultured human osteoblasts on non-porous and porous blasted DLF-Ti-6Al-4V specimens to study morphology, vitality, proliferation and differentiation of the cells. The cells spreaded and proliferated on DLF-Ti-6Al-4V over a culture time of 14 days. On porous specimens, osteoblasts grew along the rims of the pores and formed circle-shaped structures, as visualized by live/dead staining as well as scanning electron microscopy. Overall, the DLF-Ti-6Al-4V approach proved to be efficient and could be further advanced in the field of hard tissue biomaterials.

371 citations


Journal ArticleDOI
Abstract: Application of selective laser melting for manufacturing three-dimensional objects represents one of the promising directions to solve challenging industrial problems. This approach permits to extend dramatically the freedom of design and manufacture by allowing, for example, to create an object with desired shape and internal structure in a single fabrication step. The design of the part can be tailored to meet specific functions and properties (e.g. physical, mechanical, chemical, biological, etc.) using different materials. Metallic objects were manufactured by Phenix PM 100 machine from Inconel 625 powder. The objective was to analyze the influence of the manufacturing strategy on the internal structure and mechanical properties of the components manufactured by selective laser melting technology. Anisotropy of the internal structure and mechanical properties of the fabricated objects were studied.

258 citations


Journal ArticleDOI
01 Dec 2009-Acta Materialia
Abstract: Selective laser melting (SLM) is a Rapid Manufacturing technique in which parts of complex shape are produced by selectively melting layers of powder. A thorough understanding of the process is crucial for a good control of the properties of the produced parts. In this paper we present a pragmatic engineering model to study aspects of the SLM process using an enthalpy formulation and accounting for shrinkage and laser light penetration. We investigate the importance of evaporation for a set of process parameters relevant to production and find that evaporation is a phenomenon that cannot be neglected at realistic power inputs. However, phenomena such as Marangoni convection and wetting due to surface tension effects need to be considered in the future.

239 citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
202222
2021332
2020279
2019274
2018230
2017203