scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A survey of 5G technologies: regulatory, standardization and industrial perspectives

TL;DR: This paper aggregate the 5G-related information coming from the various stakeholders in order to have a comprehensive overview of 5G and provide a survey of the envisioned 5G technologies; their development thus far from the perspective of those stakeholders will open up new frontiers of services and applications for next-generation wireless networks.
About: This article is published in Digital Communications and Networks.The article was published on 2017-09-01 and is currently open access. It has received 206 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: The current research state-of-the-art of 5G IoT, key enabling technologies, and main research trends and challenges in5G IoT are reviewed.

992 citations

Journal ArticleDOI
TL;DR: A comprehensive literature review on the development towards terahertz communications and some key technologies faced in THz wireless communication systems are presented and several potential application scenarios are discussed.
Abstract: With the exponential growth of the data traffic in wireless communication systems, terahertz (THz) frequency band is envisioned as a promising candidate to support ultra-broadband for future beyond fifth generation (5G), bridging the gap between millimeter wave (mmWave) and optical frequency ranges. The purpose of this paper is to provide a comprehensive literature review on the development towards THz communications and presents some key technologies faced in THz wireless communication systems. Firstly, despite the substantial hardware problems that have to be developed in terms of the THz solid state superheterodyne receiver, high speed THz modulators and THz antennas, the practical THz channel model and the efficient THz beamforming are also described to compensate for the severe path attenuation. Moreover, two different kinds of lab-level THz communication systems are introduced minutely, named a solid state THz communication system and a spatial direct modulation THz communication system, respectively. The solid state THz system converts intermediate frequency (IF) modulated signal to THz frequency while the direct modulation THz system allows the high power THz sources to input for approving the relatively long distance communications. Finally, we discuss several potential application scenarios as well as some vital technical challenges that will be encountered in the future THz communications.

362 citations

Journal ArticleDOI
TL;DR: This paper quantifies the advantages of CF massive MIMO systems in terms of their energy- and cost-efficiency and the signal processing techniques invoked for reducing the fronthaul burden for joint channel estimation and for transmit precoding.
Abstract: Cell-free (CF) massive multiple-input-multiple-output (MIMO) systems have a large number of individually controllable antennas distributed over a wide area for simultaneously serving a small number of user equipments (UEs). This solution has been considered as a promising next-generation technology due to its ability to offer a similar quality of service to all UEs despite its low-complexity signal processing. In this paper, we provide a comprehensive survey of CF massive MIMO systems. To be more specific, the benefit of the so-called channel hardening and the favorable propagation conditions are exploited. Furthermore, we quantify the advantages of CF massive MIMO systems in terms of their energy- and cost-efficiency. Additionally, the signal processing techniques invoked for reducing the fronthaul burden for joint channel estimation and for transmit precoding are analyzed. Finally, the open research challenges in both its deployment and network management are highlighted.

322 citations

Journal ArticleDOI
TL;DR: This work investigates three mainstream consensus mechanisms in the blockchain, namely, Proof of Work (PoW), Proof of Stake (PoS), and Direct Acyclic Graph (DAG), and identifies their performances in terms of the average time to generate a new block, the confirmation delay, the Transaction Per Second (TPS) and the confirmation failure probability.

161 citations


Cites background from "A survey of 5G technologies: regula..."

  • ...Recently, the blockchain, which builds a decentralized, shared network for secure and reliable data record and transfer without a centralized authority and is one of core technologies of the 5th Generation(5G) [1], has become a hot topic in business, industry and academia [2]....

    [...]

Journal ArticleDOI
TL;DR: This work considers ten technological enablers, including besides the most cited Big Data, Internet of Things, and Cloud Computing, also others more rarely considered as Fog and Mobile Computing, Artificial Intelligence, Human-Computer Interaction, Robotics, down to the often overlooked, very recent, or taken for granted Open-Source Software, Blockchain, and the Internet.
Abstract: A new industrial revolution is undergoing, based on a number of technological paradigms. The will to foster and guide this phenomenon has been summarized in the expression “Industry 4.0” (I4.0). Initiatives under this term share the vision that many key technologies underlying Cyber-Physical Systems and Big Data Analytics are converging to a new distributed, highly automated, and highly dynamic production network , and that this process needs regulatory and cultural advancements to effectively and timely develop. In this work, we focus on the technological aspect only, highlighting the unprecedented complexity of I4.0 emerging from the scientific literature. While previous works have focused on one or up to four related enablers, we consider ten technological enablers, including besides the most cited Big Data, Internet of Things, and Cloud Computing, also others more rarely considered as Fog and Mobile Computing, Artificial Intelligence, Human-Computer Interaction, Robotics, down to the often overlooked, very recent, or taken for granted Open-Source Software, Blockchain, and the Internet. For each we explore the main characteristics in relation to I4.0 and its interdependencies with other enablers. Finally we provide a detailed analysis of challenges in leveraging each of the enablers in I4.0, evidencing possible roadblocks to be overcome and pointing at possible future directions of research. Our goal is to provide a reference for the experts in some of the technological fields involved, for a reconnaissance of integration and hybridization possibilities with other fields in the endeavor of I4.0, as well as for the laymen, for a high-level grasp of the variety (and often deep history) of the scientific research backing I4.0.

149 citations


Cites background from "A survey of 5G technologies: regula..."

  • ...Similarly, CRNs required changes to regulations that oversee frequencies licensing, allowing and defining criteria for frequency sharing [246]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The current progress of terahertz-wave technologies related to communications applications are examined and some issues that need to be considered for the future of THz communications are discussed.
Abstract: Recent changes in how people consume multimedia services are causing an explosive increase in mobile traffic. With more and more people using wireless networks, the demand for the ultra-fast wireless communications systems is increasing. To date, this demand has been accommodated with advanced modulation schemes and signal-processing technologies at microwave frequencies. However, without increasing the carrier frequencies for more spectral resources, it may be quite difficult to keep up with the needs of users. Although there are several alternative bands, recent advances in terahertz-wave (THz-wave) technologies have attracted attention due to the huge bandwidth of THz waves and its potential for use in wireless communications. The frequency band of 275 ~ 3000 GHz , which has not been allocated for specific uses yet, is especially of interest for future wireless systems with data rates of 10 Gb/s or higher. Although THz communications is still in a very early stage of development, there have been lots of reports that show its potential. In this review, we will examine the current progress of THz-wave technologies related to communications applications and discuss some issues that need to be considered for the future of THz communications.

1,072 citations

Journal ArticleDOI
TL;DR: This work analytically derives the outage probability and ergodic sum rate with closed-form expressions when the power allocations at the BS and relay (or the near user) are fixed and obtains the optimal power allocations with Closed-Form expressions to maximize the minimum achievable rate of users.
Abstract: We study a downlink non-orthogonal multiple access system with cooperative full-duplex relaying, where the near user in terms of the base station (BS) is enabled to act as a full-duplex relay for the far user. In particular, we first derive the outage probability and ergodic sum rate with closed-form expressions when the power allocations at the BS and relay (or the near user) are fixed. Then, we analytically obtain the optimal power allocations with closed-form expressions at the BS and relay to minimize the outage probability. Furthermore, by taking the fairness between the near user and far user into account, we characterize the optimal power allocations with closed-form expressions at the BS and relay to maximize the minimum achievable rate of users. Simulation results validate the correctness of the theoretical analysis and demonstrate the advantages of the proposed algorithms over the state of the art.

250 citations

Journal ArticleDOI
TL;DR: This article shows, together with standardization aspects, how combining C-RAN and D2D technologies can help to solve the delay issue and fulfill most of the targets specified for 5G networks in terms of delay, capacity, energy efficiency, mobility, and cost.
Abstract: With the surge in smartphone sensing, wireless networking, and mobile social networking techniques, mobile crowdsensing (MCS) has become a promising paradigm for 5G networks. An MCS system's service quality heavily depends on the platform, which brings the users under a common cloud with very low delay. Therefore, MCS needs a new platform that brings the best not only from the user's perspective, but also from the operator's perspective. In this article, we propose a novel architecture for MCS by combining two technologies, those being C-RAN and D2D. C-RAN is a promising enabling technology that can at the same time cope with the ever increasing mobile traffic demand and reduce the surging costs experienced by service operators. In spite of the many advantages offered by C-RAN, one of the main concerns for operators is its associated fronthaul delay. To handle such delay, we come across this D2D solution in C-RAN networks. D2D is adopted as an effective candidate for very low delay between links and has already provided evidence of its potential for novel business opportunities. This article shows, together with standardization aspects, how combining C-RAN and D2D technologies can help to solve the delay issue and fulfill most of the targets specified for 5G networks in terms of delay, capacity, energy efficiency, mobility, and cost.

62 citations

Journal ArticleDOI
TL;DR: LORA can estimate the average packet loss rate (PLR) for each sender and differentiate the fading losses from the interference losses and can provide reliability guarantees for V2V safety applications, as well as a response to environment changes in a real-time manner.
Abstract: The existing study shows that safety applications supported by vehicle-to-vehicle (V2V) communications have the potential to address 80% of all road crash issues. IEEE 802.11p is a key enabling technology to support V2V safety applications. To meet the stringent delay and reliability requirements of these applications, rate adaptation (RA) approaches have been proposed to determine the optimal data transmission rate, according to the channel conditions such as packet losses. However, existing RA solutions cannot be directly applied to V2V safety communications in highway scenarios, which exhibit lots of dynamics and severe packet losses. Moreover, physical (PHY)-layer channel fading and medium-access-control (MAC)-layer interference contribute differently to the packet losses and, thus, should be treated separately. To address these issues, in this paper, we propose a LOss differentiation RA (LORA) scheme. LORA can estimate the average packet loss rate (PLR) for each sender and differentiate the fading losses from the interference losses. Extensive evaluation results demonstrate that LORA can provide reliability guarantees for V2V safety applications, as well as a response to environment changes in a real-time manner.

37 citations

Journal ArticleDOI
TL;DR: It is demonstrated that non-orthogonal MBMS transmission can achieve better performance than the orthogonal one, while synchronous non- OrthogonalMBMS transmission is superior to the asynchronous one.
Abstract: Multimedia broadcast/multicast service (MBMS) transmission, which distributes the media content to multiple users on the same radio resources by using point-to-multipoint communications, is a highly spectrum efficient mechanism for multimedia communications. In this paper, we study the application of power domain non-orthogonal transmission to MBMS enhancements in a $K$ -tier heterogeneous network, in order to satisfy the ever-increasing demands for emerging applications and performance requirements. Then, we present non-orthogonal multi-rate MBMS transmission (NOMRMT) and non-orthogonal multi-service MBMS transmission schemes and investigate their performance by using stochastic geometry. A tractable mode is developed to analyze the performance of asynchronous and synchronous non-orthogonal MBMS transmission. Based on this model, analytical expressions for the signal-to-interference-plus-noise ratio coverage probability, average number of served users, and sum rate are derived. The results demonstrate that non-orthogonal MBMS transmission can achieve better performance than the orthogonal one, while synchronous non-orthogonal MBMS transmission is superior to the asynchronous one.

31 citations