scispace - formally typeset
Search or ask a question
Book ChapterDOI

A Survey of Attacks on Ethereum Smart Contracts SoK

22 Apr 2017-Vol. 10204, pp 164-186
TL;DR: This work analyses the security vulnerabilities of Ethereum smart contracts, providing a taxonomy of common programming pitfalls which may lead to vulnerabilities, and shows a series of attacks which exploit these vulnerabilities, allowing an adversary to steal money or cause other damage.
Abstract: Smart contracts are computer programs that can be correctly executed by a network of mutually distrusting nodes, without the need of an external trusted authority. Since smart contracts handle and transfer assets of considerable value, besides their correct execution it is also crucial that their implementation is secure against attacks which aim at stealing or tampering the assets. We study this problem in Ethereum, the most well-known and used framework for smart contracts so far. We analyse the security vulnerabilities of Ethereum smart contracts, providing a taxonomy of common programming pitfalls which may lead to vulnerabilities. We show a series of attacks which exploit these vulnerabilities, allowing an adversary to steal money or cause other damage.
Citations
More filters
Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors introduced a novel machine learning-based analysis model by introducing the shared child nodes for smart contract vulnerabilities, which can predict eight types of vulnerabilities including Re-entrancy, Arithmetic, Access Control, Denial of Service, Unchecked Low Level Calls, Bad Randomness, Front Running, and Denial Of Service.
Abstract: In recent years, a lot of vulnerabilities of smart contracts have been found. Hackers used these vulnerabilities to attack the corresponding contracts developed in the blockchain system such as Ethereum, and it has caused lots of economic losses. Therefore, it is very important to find out the potential problems of the smart contracts and develop more secure smart contracts. As blockchain security events have raised more important issues, more and more smart contract security analysis methods have been developed. Most of these methods are based on traditional static analysis or dynamic analysis methods. There are only a few methods that use emerging technologies, such as machine learning. Some models that use machine learning to detect smart contract vulnerabilities cost much time in extracting features manually. In this paper, we introduce a novel machine learning-based analysis model by introducing the shared child nodes for smart contract vulnerabilities. We build the Abstract-Syntax-Tree (AST) for smart contracts with some vulnerabilities from two data sets including SmartBugs and SolidiFI-benchmark. Then, we build the Abstract-Syntax-Tree (AST) of the labeled smart contract for data sets named Smartbugs-wilds. Next, we get the shared child nodes from both of the ASTs to obtain the structural similarity, and then, we construct a feature vector composed of the values that measure structural similarity automatically to build our machine learning model. Finally, we get a KNN model that can predict eight types of vulnerabilities including Re-entrancy, Arithmetic, Access Control, Denial of Service, Unchecked Low Level Calls, Bad Randomness, Front Running, and Denial of Service. The accuracy, recall, and precision of our KNN model are all higher than 90%. In addition, compared with some other analysis tools including Oyente and SmartCheck, our model has higher accuracy. In addition, we spent less time for training .

20 citations

Proceedings ArticleDOI
06 Jun 2020
TL;DR: The model suggests that factor such as perceived financial costs, facilitating conditions, trust and readiness has influence on the construct of perceived usefulness (PU) and perceived ease of use (PEOU), which affects the behavioral intention to use the blockchain smart contracts in construction industry of Thailand.
Abstract: Traditionally, the contractual transactions between untrusted parties were generally carried out in a centralized form, requiring a trusted third party to act as a witness, and make them legally binding, enforceable and trustful. However, the process of involving a third party is associated with high expenses and delays. The Blockchain technology has been developed to address these issues, by allowing parties to enter into contractual agreements without involvement of third parties. The contract allows conducting of trusted agreements and transactions between unknown parties without the need of having an enforcement mechanism, trusted third party or legal system. In the construction sector, the smart contracts would help eliminate the slow, expensive and brittle transactions, associated with integrity and transparency issues due to potential records manipulation of the traditional contracts. This study focused on designing a blockchain smart contract adoption model and understanding stakeholders' needs for using blockchain-based smart contracts in construction industry. The study proposed the extended Technology Acceptance Model, which illustrates the constructs around the adoption and use of the blockchain smart contracts in Thailand construction sector. The model suggests that factor such as perceived financial costs, facilitating conditions, trust and readiness has influence on the construct of perceived usefulness (PU) and perceived ease of use (PEOU), which affects the behavioral intention to use the blockchain smart contracts in construction industry of Thailand.

20 citations


Cites background from "A Survey of Attacks on Ethereum Sma..."

  • ...The smart contracts imply the self-executing programs, whose terms of agreement between parties are written in lines of codes, which run on the blockchain network [2]....

    [...]

Journal ArticleDOI
TL;DR: This paper evaluates several Distributed Ledger Technologies (DLTs) features depicting the Bitcoin, Ripple, Ethereum, Hyperledger, Algorand and IOTA networks, focusing on their security challenges and exposing numerous threats and vulnerabilities.

20 citations

Book ChapterDOI
21 Jul 2020
TL;DR: This paper describes the Move Prover, an automatic formal verification system for Move, including the language for formal specification and the translation to the Boogie intermediate verification language.
Abstract: The Libra blockchain is designed to store billions of dollars in assets, so the security of code that executes transactions is important. The Libra blockchain has a new language for implementing transactions, called “Move.” This paper describes the Move Prover, an automatic formal verification system for Move. We overview the unique features of the Move language and then describe the architecture of the Prover, including the language for formal specification and the translation to the Boogie intermediate verification language .

20 citations


Cites background from "A Survey of Attacks on Ethereum Sma..."

  • ...Unfortunately, bugs in smart contracts have led to massive amounts of funds being stolen or made inaccessible [5,15]....

    [...]

Posted Content
TL;DR: The FSolidM framework is created, which allows developers to define contracts as finite state machines (FSMs) with rigorous and clear semantics and provides an easy-to-use graphical editor for specifying FSMs, a code generator for creating Ethereum smart contracts, and a set of plugins that developers may add to their FSMs to enhance security and functionality.
Abstract: Blockchain-based distributed computing platforms enable the trusted execution of computation - defined in the form of smart contracts - without trusted agents. Smart contracts are envisioned to have a variety of applications, ranging from financial to IoT asset tracking. Unfortunately, the development of smart contracts has proven to be extremely error prone. In practice, contracts are riddled with security vulnerabilities comprising a critical issue since bugs are by design non-fixable and contracts may handle financial assets of significant value. To facilitate the development of secure smart contracts, we have created the FSolidM framework, which allows developers to define contracts as finite state machines (FSMs) with rigorous and clear semantics. FSolidM provides an easy-to-use graphical editor for specifying FSMs, a code generator for creating Ethereum smart contracts, and a set of plugins that developers may add to their FSMs to enhance security and functionality.

20 citations


Cites background or methods from "A Survey of Attacks on Ethereum Sma..."

  • ...This issue has been referred to as “transactionordering dependence” [5] and “unpredictable state” [10], and it can lead to various security vulnerabilities....

    [...]

  • ...Vulnerabilities reentrancy [5,10] locking transaction ordering [5,10] transition counter...

    [...]

  • ...As part of our framework, we provide a set of plugins that address common security issues and implement common design patterns, which were identified by prior work [5,10,11]....

    [...]

References
More filters
Book
01 Jan 2002
TL;DR: This presentation discusses Functional Programming in HOL, which aims to provide students with an understanding of the programming language through the lens of Haskell.
Abstract: Elementary Techniques.- 1. The Basics.- 2. Functional Programming in HOL.- 3. More Functional Programming.- 4. Presenting Theories.- Logic and Sets.- 5. The Rules of the Game.- 6. Sets, Functions, and Relations.- 7. Inductively Defined Sets.- Advanced Material.- 8. More about Types.- 9. Advanced Simplification, Recursion, and Induction.- 10. Case Study: Verifying a Security Protocol.

2,964 citations

01 Jan 2013
TL;DR: Ethereum as mentioned in this paper is a transactional singleton machine with shared state, which can be seen as a simple application on a decentralised, but singleton, compute resource, and it provides a plurality of resources, each with a distinct state and operating code but able to interact through a message-passing framework with others.
Abstract: The blockchain paradigm when coupled with cryptographically-secured transactions has demonstrated its utility through a number of projects, not least Bitcoin. Each such project can be seen as a simple application on a decentralised, but singleton, compute resource. We can call this paradigm a transactional singleton machine with shared-state. Ethereum implements this paradigm in a generalised manner. Furthermore it provides a plurality of such resources, each with a distinct state and operating code but able to interact through a message-passing framework with others. We discuss its design, implementation issues, the opportunities it provides and the future hurdles we envisage.

2,755 citations

Journal ArticleDOI
TL;DR: Protocols with application in important contracting areas, including credit, content rights management, payment systems, and contracts with bearer are discussed.
Abstract: Smart contracts combine protocols with user interfaces to formalize and secure relationships over computer networks. Objectives and principles for the design of these systems are derived from legal principles, economic theory, and theories of reliable and secure protocols. Similarities and differences between smart contracts and traditional business procedures based on written contracts, controls, and static forms are discussed. By using cryptographic and other security mechanisms, we can secure many algorithmically specifiable relationships from breach by principals, and from eavesdropping or malicious interference by third parties, up to considerations of time, user interface, and completeness of the algorithmic specification. This article discusses protocols with application in important contracting areas, including credit, content rights management, payment systems, and contracts with bearer.

1,495 citations

Proceedings ArticleDOI
24 Oct 2016
TL;DR: This paper introduces a novel quantitative framework to analyse the security and performance implications of various consensus and network parameters of PoW blockchains and devise optimal adversarial strategies for double-spending and selfish mining while taking into account real world constraints.
Abstract: Proof of Work (PoW) powered blockchains currently account for more than 90% of the total market capitalization of existing digital cryptocurrencies. Although the security provisions of Bitcoin have been thoroughly analysed, the security guarantees of variant (forked) PoW blockchains (which were instantiated with different parameters) have not received much attention in the literature. This opens the question whether existing security analysis of Bitcoin's PoW applies to other implementations which have been instantiated with different consensus and/or network parameters. In this paper, we introduce a novel quantitative framework to analyse the security and performance implications of various consensus and network parameters of PoW blockchains. Based on our framework, we devise optimal adversarial strategies for double-spending and selfish mining while taking into account real world constraints such as network propagation, different block sizes, block generation intervals, information propagation mechanism, and the impact of eclipse attacks. Our framework therefore allows us to capture existing PoW-based deployments as well as PoW blockchain variants that are instantiated with different parameters, and to objectively compare the tradeoffs between their performance and security provisions.

1,258 citations

Proceedings ArticleDOI
24 Oct 2016
TL;DR: This paper investigates the security of running smart contracts based on Ethereum in an open distributed network like those of cryptocurrencies, and proposes ways to enhance the operational semantics of Ethereum to make contracts less vulnerable.
Abstract: Cryptocurrencies record transactions in a decentralized data structure called a blockchain. Two of the most popular cryptocurrencies, Bitcoin and Ethereum, support the feature to encode rules or scripts for processing transactions. This feature has evolved to give practical shape to the ideas of smart contracts, or full-fledged programs that are run on blockchains. Recently, Ethereum's smart contract system has seen steady adoption, supporting tens of thousands of contracts, holding millions dollars worth of virtual coins. In this paper, we investigate the security of running smart contracts based on Ethereum in an open distributed network like those of cryptocurrencies. We introduce several new security problems in which an adversary can manipulate smart contract execution to gain profit. These bugs suggest subtle gaps in the understanding of the distributed semantics of the underlying platform. As a refinement, we propose ways to enhance the operational semantics of Ethereum to make contracts less vulnerable. For developers writing contracts for the existing Ethereum system, we build a symbolic execution tool called Oyente to find potential security bugs. Among 19, 336 existing Ethereum contracts, Oyente flags 8, 833 of them as vulnerable, including the TheDAO bug which led to a 60 million US dollar loss in June 2016. We also discuss the severity of other attacks for several case studies which have source code available and confirm the attacks (which target only our accounts) in the main Ethereum network.

1,232 citations

Trending Questions (1)
Why ethereum is important?

The provided paper does not explicitly mention why Ethereum is important.