scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Survey of Face Recognition Techniques

01 Jun 2009-Journal of Information Processing Systems (Korea Information Processing Society)-Vol. 5, Iss: 2, pp 41-68
TL;DR: A discussion outlining the incentive for using face recognition, the applications of this technology, and some of the difficulties plaguing current systems with regard to this task has been provided.
Abstract: Face recognition presents a challenging problem in the field of image analysis and computer vision, and as such has received a great deal of attention over the last few years because of its many applications in various domains. Face recognition techniques can be broadly divided into three categories based on the face data acquisition methodology: methods that operate on intensity images; those that deal with video sequences; and those that require other sensory data such as 3D information or infra-red imagery. In this paper, an overview of some of the well-known methods in each of these categories is provided and some of the benefits and drawbacks of the schemes mentioned therein are examined. Furthermore, a discussion outlining the incentive for using face recognition, the applications of this technology, and some of the difficulties plaguing current systems with regard to this task has also been provided. This paper also mentions some of the most recent algorithms developed for this purpose and attempts to give an idea of the state of the art of face recognition technology.
Citations
More filters
01 Jan 2016
TL;DR: It is shown that OpenFace provides near-human accuracy on the LFW benchmark and present a new classification benchmark for mobile scenarios, intended for non-experts interested in using OpenFace and provides a light introduction to the deep neural network techniques the authors use.
Abstract: Cameras are becoming ubiquitous in the Internet of Things (IoT) and can use face recognition technology to improve context. There is a large accuracy gap between today’s publicly available face recognition systems and the state-of-the-art private face recognition systems. This paper presents our OpenFace face recognition library that bridges this accuracy gap. We show that OpenFace provides near-human accuracy on the LFW benchmark and present a new classification benchmark for mobile scenarios. This paper is intended for non-experts interested in using OpenFace and provides a light introduction to the deep neural network techniques we use. We released OpenFace in October 2015 as an open source library under the Apache 2.0 license. It is available at: http://cmusatyalab.github.io/openface/ This research was supported by the National Science Foundation (NSF) under grant number CNS-1518865. Additional support was provided by Crown Castle, the Conklin Kistler family fund, Google, the Intel Corporation, and Vodafone. NVIDIA’s academic hardware grant provided the Tesla K40 GPU used in all of our experiments. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and should not be attributed to their employers or funding sources.

827 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the recent developments on deep face recognition can be found in this paper, covering broad topics on algorithm designs, databases, protocols, and application scenes, as well as the technical challenges and several promising directions.

353 citations

Journal ArticleDOI
TL;DR: In this article, an up-to-date review of major human face recognition research is provided, including a review of the most recent face recognition techniques and their applications, as well as a summary of the research results.
Abstract: The task of face recognition has been actively researched in recent years. This paper provides an up-to-date review of major human face recognition research. We first present an overview of face recognition and its applications. Then, a literature review of the most recent face recognition techniques is presented. Description and limitations of face databases which are used to test the performance of these face recognition algorithms are given. A brief summary of the face recognition vendor test (FRVT) 2002, a large scale evaluation of automatic face recognition technology, and its conclusions are also given. Finally, we give a summary of the research results. Keywords—Combined classifiers, face recognition, graph matching, neural networks.

316 citations

Patent
20 Mar 2014
TL;DR: In this paper, a system, apparatus, method, and machine readable medium are described for performing advanced authentication techniques and associated applications, and one embodiment of such a method comprises: receiving a policy identifying a set of acceptable authentication capabilities, determining a client authentication capabilities; and filtering the set of allowable authentication capabilities based on the determined set of client authentication capability to arrive at a filtered set of one or more authentication capabilities for authenticating a user.
Abstract: A system, apparatus, method, and machine readable medium are described for performing advanced authentication techniques and associated applications. For example, one embodiment of a method comprises: receiving a policy identifying a set of acceptable authentication capabilities; determining a set of client authentication capabilities; and filtering the set of acceptable authentication capabilities based on the determined set of client authentication capabilities to arrive at a filtered set of one or more authentication capabilities for authenticating a user of the client.

279 citations

Journal ArticleDOI
TL;DR: This paper starts by recovering 3D shape using a novel algorithm which incorporates generalization error of the model obtained from empirical measurements, and describes two methods to recover facial texture, diffuse lighting, specular reflectance, and camera properties from a single image.
Abstract: In this paper, we present a complete framework to inverse render faces with a 3D Morphable Model (3DMM). By decomposing the image formation process into geometric and photometric parts, we are able to state the problem as a multilinear system which can be solved accurately and efficiently. As we treat each contribution as independent, the objective function is convex in the parameters and a global solution is guaranteed. We start by recovering 3D shape using a novel algorithm which incorporates generalization error of the model obtained from empirical measurements. We then describe two methods to recover facial texture, diffuse lighting, specular reflectance, and camera properties from a single image. The methods make increasingly weak assumptions and can be solved in a linear fashion. We evaluate our findings on a publicly available database, where we are able to outperform an existing state-of-the-art algorithm. We demonstrate the usability of the recovered parameters in a recognition experiment conducted on the CMU-PIE database.

192 citations


Cites background from "A Survey of Face Recognition Techni..."

  • ...Feature selection is arbitrary, their detection prone to errors and the overall performance not satisfactory [15]....

    [...]

References
More filters
Journal ArticleDOI
Lawrence R. Rabiner1
01 Feb 1989
TL;DR: In this paper, the authors provide an overview of the basic theory of hidden Markov models (HMMs) as originated by L.E. Baum and T. Petrie (1966) and give practical details on methods of implementation of the theory along with a description of selected applications of HMMs to distinct problems in speech recognition.
Abstract: This tutorial provides an overview of the basic theory of hidden Markov models (HMMs) as originated by L.E. Baum and T. Petrie (1966) and gives practical details on methods of implementation of the theory along with a description of selected applications of the theory to distinct problems in speech recognition. Results from a number of original sources are combined to provide a single source of acquiring the background required to pursue further this area of research. The author first reviews the theory of discrete Markov chains and shows how the concept of hidden states, where the observation is a probabilistic function of the state, can be used effectively. The theory is illustrated with two simple examples, namely coin-tossing, and the classic balls-in-urns system. Three fundamental problems of HMMs are noted and several practical techniques for solving these problems are given. The various types of HMMs that have been studied, including ergodic as well as left-right models, are described. >

21,819 citations

Book
01 Jan 1995
TL;DR: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition, and is designed as a text, with over 100 exercises, to benefit anyone involved in the fields of neural computation and pattern recognition.
Abstract: From the Publisher: This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts, the book examines techniques for modelling probability density functions and the properties and merits of the multi-layer perceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100 exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.

19,056 citations

Journal ArticleDOI
Paul J. Besl1, H.D. McKay1
TL;DR: In this paper, the authors describe a general-purpose representation-independent method for the accurate and computationally efficient registration of 3D shapes including free-form curves and surfaces, based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point.
Abstract: The authors describe a general-purpose, representation-independent method for the accurate and computationally efficient registration of 3-D shapes including free-form curves and surfaces. The method handles the full six degrees of freedom and is based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point. The ICP algorithm always converges monotonically to the nearest local minimum of a mean-square distance metric, and the rate of convergence is rapid during the first few iterations. Therefore, given an adequate set of initial rotations and translations for a particular class of objects with a certain level of 'shape complexity', one can globally minimize the mean-square distance metric over all six degrees of freedom by testing each initial registration. One important application of this method is to register sensed data from unfixtured rigid objects with an ideal geometric model, prior to shape inspection. Experimental results show the capabilities of the registration algorithm on point sets, curves, and surfaces. >

17,598 citations

Journal ArticleDOI
01 Aug 1997
TL;DR: The model studied can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting, and it is shown that the multiplicative weight-update Littlestone?Warmuth rule can be adapted to this model, yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems.
Abstract: In the first part of the paper we consider the problem of dynamically apportioning resources among a set of options in a worst-case on-line framework. The model we study can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting. We show that the multiplicative weight-update Littlestone?Warmuth rule can be adapted to this model, yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems. We show how the resulting learning algorithm can be applied to a variety of problems, including gambling, multiple-outcome prediction, repeated games, and prediction of points in Rn. In the second part of the paper we apply the multiplicative weight-update technique to derive a new boosting algorithm. This boosting algorithm does not require any prior knowledge about the performance of the weak learning algorithm. We also study generalizations of the new boosting algorithm to the problem of learning functions whose range, rather than being binary, is an arbitrary finite set or a bounded segment of the real line.

15,813 citations

Journal ArticleDOI
TL;DR: There are several arguments which support the observed high accuracy of SVMs, which are reviewed and numerous examples and proofs of most of the key theorems are given.
Abstract: The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light.

15,696 citations