scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A survey of the consensus for multi-agent systems

TL;DR: The state-of-the-art development in the consensus of MASs is reviewed, including consensus subjected to communication constraints, leader-following consensus, group consensus, consensus based on trigger mechanism, finite-time consensus, multi-consensus and multi-tracking.
Abstract: Multi-agent systems (MASs) has developed into an emerging complex system science and gradually infiltrated into various fields of social life. The problem of consensus (i.e. all agents eventually t...
Citations
More filters
Journal ArticleDOI
TL;DR: The proposed control framework has been shown to converge in a finite time and the supporting communication software has been designed with the objective of minimizing communication delays and the underlying network guarantees reliability of the communication.
Abstract: Autonomous driving is a safety critical application of sensing and decision-making technologies. Communication technologies extend the awareness capabilities of vehicles, beyond what is achievable with the on-board systems only. Nonetheless, issues typically related to wireless networking must be taken into account when designing safe and reliable autonomous systems. The aim of this work is to present a control algorithm and a communication paradigm over 5G networks for negotiating traffic junctions in urban areas. The proposed control framework has been shown to converge in a finite time and the supporting communication software has been designed with the objective of minimizing communication delays. At the same time, the underlying network guarantees reliability of the communication. The proposed framework has been successfully deployed and tested, in partnership with Ericsson AB, at the AstaZero proving ground in Goteborg, Sweden. In our experiments, three heterogeneous autonomous vehicles successfully drove through a 4-way intersection of 235 square meters in an urban scenario.

30 citations


Cites background from "A survey of the consensus for multi..."

  • ...Note that, differently from discontinuous signed finite-time nonlinear protocols [19], [20], here we design a homogeneous continuous protocol aimed at avoiding...

    [...]

Journal ArticleDOI
TL;DR: In this paper, a survey of consensus algorithms for the agents with the single-integrator, doubleintegrator and high-order dynamic models were collected from various research works, and the convergence condition for each of these algorithms was explained.
Abstract: This paper provides a review of the consensus problem as one of the most challenging issues in the distributed control of the multi-agent systems (MASs). In this survey, firstly, the consensus algorithms for the agents with the single-integrator, double-integrator and high-order dynamic models were collected from various research works, and the convergence condition for each of these algorithms was explained. Secondly, all the consensus-related problems such as those in the sampled-data consensus, quantized consensus, random-network consensus, leader–follower consensus, finite-time consensus, bipartite consensus, group consensus/cluster consensus, and the scaled consensus were analyzed and compared with each other. Thirdly, we focused on the common control techniques used for the consensus problems in the presence of disturbance and divided all these control methods into two categories: robust control and adaptive control. Finally, we reviewed the most prevalent consensus applications in the MASs, including the subjects of rendezvous, formation control, axial alignment and the wireless sensor networks.

27 citations

Journal ArticleDOI
TL;DR: Several strategies on how to incentivize vehicles to participate in platooning based on directly or indirectly compensating vehicles for fewer benefits resulting from the integration into a platooning system are discussed.

8 citations


Cites background from "A survey of the consensus for multi..."

  • ...Approaches to handle this “consensus problem” in multi-agent systems are provided by [26]....

    [...]

Journal ArticleDOI
TL;DR: In this paper , a distributed iterative finite impulse response (DIFIR) consensus filter for leader-following systems is proposed. But the authors do not consider the leader's accuracy.
Abstract: For the target-tracking problem, full state of the target may not be available since it may be expensive or impossible to obtain. Thus, the state needs to be reconstructed or estimated only according to measured inputs and outputs. The impossible case that all followers can measure the target directly yields the study of distributed methods, thus reducing the communication and computation resource while resulting in more robustness. This article confronts these problems by addressing a distributed iterative finite impulse response (DIFIR) consensus filter for leader-following systems. A solution to the underlying problem is obtained by involving a distributed measurement model wherein not only the neighbors' estimates are applied but also the directed measurement data are used, and expressed by a computationally efficient iterative algorithm. Applying this DIFIR strategy, it is shown that the leader's estimates by all followers reach H∞ consensus, whose value is the local unbiased estimates of the leader. Then, the result is extended to multiagent systems whose leader has unknown inputs. Incorporating the input estimates, a new DIFIR is proposed. Finally, examples are given to illustrate the consistency and robustness of the developed new design techniques.

6 citations

Journal ArticleDOI
TL;DR: The existing techniques presented in the literature that can be utilized for implementing adaptive multi-agent networks in smart cities and insights and directions for future research in this domain are presented.
Abstract: The world is moving toward a new connected world in which millions of intelligent processing devices communicate with each other to provide services in transportation, telecommunication, and power grids in the future’s smart cities. Distributed computing is considered one of the efficient platforms for processing and management of massive amounts of data collected by smart devices. This can be implemented by utilizing multi-agent systems (MASs) with multiple autonomous computational entities by memory and computation capabilities and the possibility of message-passing between them. These systems provide a dynamic and self-adaptive platform for managing distributed large-scale systems, such as the Internet-of-Things (IoTs). Despite, the potential applicability of MASs in smart cities, very few practical systems have been deployed using agent-oriented systems. This research surveys the existing techniques presented in the literature that can be utilized for implementing adaptive multi-agent networks in smart cities. The related literature is categorized based on the steps of designing and controlling these adaptive systems. These steps cover the techniques required to define, monitor, plan, and evaluate the performance of an autonomous MAS. At the end, the challenges and barriers for the utilization of these systems in current smart cities, and insights and directions for future research in this domain, are presented.

5 citations

References
More filters
Journal ArticleDOI
TL;DR: A distinctive feature of this work is to address consensus problems for networks with directed information flow by establishing a direct connection between the algebraic connectivity of the network and the performance of a linear consensus protocol.
Abstract: In this paper, we discuss consensus problems for networks of dynamic agents with fixed and switching topologies. We analyze three cases: 1) directed networks with fixed topology; 2) directed networks with switching topology; and 3) undirected networks with communication time-delays and fixed topology. We introduce two consensus protocols for networks with and without time-delays and provide a convergence analysis in all three cases. We establish a direct connection between the algebraic connectivity (or Fiedler eigenvalue) of the network and the performance (or negotiation speed) of a linear consensus protocol. This required the generalization of the notion of algebraic connectivity of undirected graphs to digraphs. It turns out that balanced digraphs play a key role in addressing average-consensus problems. We introduce disagreement functions for convergence analysis of consensus protocols. A disagreement function is a Lyapunov function for the disagreement network dynamics. We proposed a simple disagreement function that is a common Lyapunov function for the disagreement dynamics of a directed network with switching topology. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results.

11,658 citations


"A survey of the consensus for multi..." refers background in this paper

  • ...The theoretical framework of the consensus problem is proposed, which reveals the relationship between the algebraic connectivity of the graph, the consensus convergence rate and the upper bound of the time-delay tolerance in Olfati-Saber and Murray (2004)....

    [...]

Journal ArticleDOI
TL;DR: A theoretical explanation for the observed behavior of the Vicsek model, which proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.
Abstract: In a recent Physical Review Letters article, Vicsek et al. propose a simple but compelling discrete-time model of n autonomous agents (i.e., points or particles) all moving in the plane with the same speed but with different headings. Each agent's heading is updated using a local rule based on the average of its own heading plus the headings of its "neighbors." In their paper, Vicsek et al. provide simulation results which demonstrate that the nearest neighbor rule they are studying can cause all agents to eventually move in the same direction despite the absence of centralized coordination and despite the fact that each agent's set of nearest neighbors change with time as the system evolves. This paper provides a theoretical explanation for this observed behavior. In addition, convergence results are derived for several other similarly inspired models. The Vicsek model proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.

8,233 citations

Proceedings ArticleDOI
01 Aug 1987
TL;DR: In this article, an approach based on simulation as an alternative to scripting the paths of each bird individually is explored, with the simulated birds being the particles and the aggregate motion of the simulated flock is created by a distributed behavioral model much like that at work in a natural flock; the birds choose their own course.
Abstract: The aggregate motion of a flock of birds, a herd of land animals, or a school of fish is a beautiful and familiar part of the natural world. But this type of complex motion is rarely seen in computer animation. This paper explores an approach based on simulation as an alternative to scripting the paths of each bird individually. The simulated flock is an elaboration of a particle systems, with the simulated birds being the particles. The aggregate motion of the simulated flock is created by a distributed behavioral model much like that at work in a natural flock; the birds choose their own course. Each simulated bird is implemented as an independent actor that navigates according to its local perception of the dynamic environment, the laws of simulated physics that rule its motion, and a set of behaviors programmed into it by the "animator." The aggregate motion of the simulated flock is the result of the dense interaction of the relatively simple behaviors of the individual simulated birds.

7,365 citations

Journal ArticleDOI
TL;DR: Numerical evidence is presented that this model results in a kinetic phase transition from no transport to finite net transport through spontaneous symmetry breaking of the rotational symmetry.
Abstract: A simple model with a novel type of dynamics is introduced in order to investigate the emergence of self-ordered motion in systems of particles with biologically motivated interaction. In our model particles are driven with a constant absolute velocity and at each time step assume the average direction of motion of the particles in their neighborhood with some random perturbation $(\ensuremath{\eta})$ added. We present numerical evidence that this model results in a kinetic phase transition from no transport (zero average velocity, $|{\mathbf{v}}_{a}|\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}0$) to finite net transport through spontaneous symmetry breaking of the rotational symmetry. The transition is continuous, since $|{\mathbf{v}}_{a}|$ is found to scale as $({\ensuremath{\eta}}_{c}\ensuremath{-}\ensuremath{\eta}{)}^{\ensuremath{\beta}}$ with $\ensuremath{\beta}\ensuremath{\simeq}0.45$.

6,514 citations

Journal ArticleDOI
TL;DR: It is shown that information consensus under dynamically changing interaction topologies can be achieved asymptotically if the union of the directed interaction graphs have a spanning tree frequently enough as the system evolves.
Abstract: This note considers the problem of information consensus among multiple agents in the presence of limited and unreliable information exchange with dynamically changing interaction topologies. Both discrete and continuous update schemes are proposed for information consensus. This note shows that information consensus under dynamically changing interaction topologies can be achieved asymptotically if the union of the directed interaction graphs have a spanning tree frequently enough as the system evolves.

6,135 citations