scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A survey of void handling techniques for geographic routing in wireless networks

01 Jan 2007-IEEE Communications Surveys and Tutorials (IEEE)-Vol. 9, Iss: 1, pp 50-67
TL;DR: An overview of the void problem is presented and the currently available void-handling techniques (as of July 2006) for geographic routing are surveyed, each designed with a different approach.
Abstract: Communications voids, where geographic greedy forwarding fails to move a packet further towards its destination, are an important issue for geographic routing in wireless networks. This article presents an overview of the void problem and surveys the currently available void-handling techniques (as of July 2006) for geographic routing. In the survey, we classify these void-handling techniques into six categories, each designed with a different approach, that is, planar-graph-based, geometric, flooding-based, costbased, heuristic, and hybrid. For each category, we present its basic principle and illustrate some classic techniques as well as the latest advances. We also provide a qualitative comparison of these techniques and discuss some possible directions of future research.
Citations
More filters
MonographDOI
01 Jan 2009
TL;DR: In this paper, the authors provide a comprehensive and up-to-date coverage of topics and fundamental theories underpinning measurement techniques and localization algorithms in WSNs. And they provide relevant references and the latest studies emerging out of the wireless sensor network field.
Abstract: Wireless localization techniques are an area that has attracted interest from both industry and academia, with self-localization capability providing a highly desirable characteristic of wireless sensor networks. Localization Algorithms and Strategies for Wireless Sensor Networks encompasses the significant and fast growing area of wireless localization techniques. This book provides comprehensive and up-to-date coverage of topics and fundamental theories underpinning measurement techniques and localization algorithms. A useful compilation for academicians, researchers, and practitioners, this Premier Reference Source contains relevant references and the latest studies emerging out of the wireless sensor network field.

290 citations

Journal ArticleDOI
TL;DR: Simulation results show that GEDAR significantly improves the network performance when compared with the baseline solutions, even in hard and difficult mobile scenarios of very sparse and very dense networks and for high network traffic loads.
Abstract: Underwater wireless sensor networks (UWSNs) have been showed as a promising technology to monitor and explore the oceans in lieu of traditional undersea wireline instruments. Nevertheless, the data gathering of UWSNs is still severely limited because of the acoustic channel communication characteristics. One way to improve the data collection in UWSNs is through the design of routing protocols considering the unique characteristics of the underwater acoustic communication and the highly dynamic network topology. In this paper, we propose the GEDAR routing protocol for UWSNs. GEDAR is an anycast, geographic and opportunistic routing protocol that routes data packets from sensor nodes to multiple sonobuoys (sinks) at the sea's surface. When the node is in a communication void region, GEDAR switches to the recovery mode procedure which is based on topology control through the depth adjustment of the void nodes, instead of the traditional approaches using control messages to discover and maintain routing paths along void regions. Simulation results show that GEDAR significantly improves the network performance when compared with the baseline solutions, even in hard and difficult mobile scenarios of very sparse and very dense networks and for high network traffic loads.

265 citations


Cites background from "A survey of void handling technique..."

  • ...Moreover, there is no need to transmit routing messages to update routing path states [10]....

    [...]

Journal ArticleDOI
TL;DR: This article surveys this paradigm shift for routing in WSNs and follows a rather chronological organization within the given protocol taxonomy, sheds some light on the design choices of emerging IETF ROLL protocols and provides design parameters of interest to the WSN engineer, essentially enabling the design and implementation of more reliable and efficient WSN solutions.
Abstract: In large networks, a data source may not reach the intended sink in a single hop, thereby requiring the traffic to be routed via multiple hops. An optimized choice of such routing path is known to significantly increase the performance of said networks. This holds particularly true for wireless sensor networks (WSNs) consisting of a large amount of miniaturized battery-powered wireless networked sensors required to operate for years with no human intervention. There has hence been a growing interest on understanding and optimizing WSN routing and networking protocols in recent years, where the limited and constrained resources have driven research towards primarily reducing energy consumption, memory requirements and complexity of routing functionalities. To this end, early flooding-based and hierarchical protocols have migrated within the past decade to geographic and self-organizing coordinate-based routing solutions. The former have been brought to standardization through the Internet Engineering Task Force (IETF) Mobile Ad-hoc Networks (MANET) working group; the latter are currently finding their way into standardization through the IETF Routing Over Low power and Lossy networks (ROLL) working group. This article thus surveys this paradigm shift for routing in WSNs and, unlike previous milestone surveys, follows a rather chronological organization within the given protocol taxonomy. For each protocol family, we provide a didactic presentation of the basic concept, a discussion on the enhancements and variants on that concept, and a detailed description of the latest state-of-the-art protocols of that family. We believe that this organization sheds some light on the design choices of emerging IETF ROLL protocols and also provides design parameters of interest to the WSN engineer, essentially enabling the design and implementation of more reliable and efficient WSN solutions.

181 citations


Cites background from "A survey of void handling technique..."

  • ...A greedy geographic routing algorithm fails when it reaches a void [44]....

    [...]

  • ...[44] S4 [72] VCost [64] Benbadis et al....

    [...]

  • ...Because of the void problem, geographical protocols need to switch between a greedy and a face traversal mode to guarantee delivery [41], [44], [49]....

    [...]

Journal ArticleDOI
TL;DR: The design principle of XLP is based on the cross-layer concept of initiative determination, which enables receiver-based contention, initiative-based forwarding, local congestion control, and distributed duty cycle operation to realize efficient and reliable communication in WSNs.
Abstract: Severe energy constraints of battery-powered sensor nodes necessitate energy-efficient communication in Wireless Sensor Networks (WSNs). However, the vast majority of the existing solutions are based on the classical layered protocol approach, which leads to significant overhead. It is much more efficient to have a unified scheme, which blends common protocol layer functionalities into a cross-layer module. In this paper, a cross-layer protocol (XLP) is introduced, which achieves congestion control, routing, and medium access control in a cross-layer fashion. The design principle of XLP is based on the cross-layer concept of initiative determination, which enables receiver-based contention, initiative-based forwarding, local congestion control, and distributed duty cycle operation to realize efficient and reliable communication in WSNs. The initiative determination requires simple comparisons against thresholds, and thus, is very simple to implement, even on computationally constrained devices. To the best of our knowledge, XLP is the first protocol that integrates functionalities of all layers from PHY to transport into a cross-layer protocol. A cross-layer analytical framework is developed to investigate the performance of the XLP. Moreover, in a cross-layer simulation platform, the state-of-the-art layered and cross-layer protocols have been implemented along with XLP for performance evaluations. XLP significantly improves the communication performance and outperforms the traditional layered protocol architectures in terms of both network performance and implementation complexity.

179 citations


Cites background or methods from "A survey of void handling technique..."

  • ...This work is supported by the National Science Foundation under contract CNS-0519841....

    [...]

  • ...In this paper, we propose a novel initiative determination concept that allows many communication and networking functionalities be implemented in a single protocol....

    [...]

Proceedings ArticleDOI
19 Apr 2009
TL;DR: A simple but robust generalization of greedy distance routing called Gravity-Pressure (GP) routing is proposed, which always succeeds in finding a route to the destination provided that a path exists, even if a significant fraction of links or nodes is removed subsequent to the embedding.
Abstract: We propose an embedding and routing scheme for arbitrary network connectivity graphs, based on greedy routing and utilizing virtual node coordinates. In dynamic multihop packet-switching communication networks, routing elements can join or leave during network operation or exhibit intermittent failures. We present an algorithm for online greedy graph embedding in the hyperbolic plane that enables incremental embedding of network nodes as they join the network, without disturbing the global embedding. Even a single link or node removal may invalidate the greedy routing success guarantees in network embeddings based on an embedded spanning tree subgraph. As an alternative to frequent reembedding of temporally dynamic network graphs in order to retain the greedy embedding property, we propose a simple but robust generalization of greedy distance routing called Gravity-Pressure (GP) routing. Our routing method always succeeds in finding a route to the destination provided that a path exists, even if a significant fraction of links or nodes is removed subsequent to the embedding. GP routing does not require precomputation or maintenance of special spanning subgraphs and, as demonstrated by our numerical evaluation, is particularly suitable for operation in tandem with our proposed algorithm for online graph embedding.

140 citations


Cites background from "A survey of void handling technique..."

  • ...These ideas could perhaps be jointly termed as “cost-based void handling” [9]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: When n identical randomly located nodes, each capable of transmitting at W bits per second and using a fixed range, form a wireless network, the throughput /spl lambda/(n) obtainable by each node for a randomly chosen destination is /spl Theta/(W//spl radic/(nlogn)) bits persecond under a noninterference protocol.
Abstract: When n identical randomly located nodes, each capable of transmitting at W bits per second and using a fixed range, form a wireless network, the throughput /spl lambda/(n) obtainable by each node for a randomly chosen destination is /spl Theta/(W//spl radic/(nlogn)) bits per second under a noninterference protocol. If the nodes are optimally placed in a disk of unit area, traffic patterns are optimally assigned, and each transmission's range is optimally chosen, the bit-distance product that can be transported by the network per second is /spl Theta/(W/spl radic/An) bit-meters per second. Thus even under optimal circumstances, the throughput is only /spl Theta/(W//spl radic/n) bits per second for each node for a destination nonvanishingly far away. Similar results also hold under an alternate physical model where a required signal-to-interference ratio is specified for successful receptions. Fundamentally, it is the need for every node all over the domain to share whatever portion of the channel it is utilizing with nodes in its local neighborhood that is the reason for the constriction in capacity. Splitting the channel into several subchannels does not change any of the results. Some implications may be worth considering by designers. Since the throughput furnished to each user diminishes to zero as the number of users is increased, perhaps networks connecting smaller numbers of users, or featuring connections mostly with nearby neighbors, may be more likely to be find acceptance.

9,008 citations


"A survey of void handling technique..." refers background in this paper

  • ...For instance, the minimum energy criterion may favor a path with the largest number of hops, while the minimum delay criterion may favor a path with the smallest number of hops (i.e., the shortest path) [ 8 ]....

    [...]

Proceedings ArticleDOI
01 Aug 2000
TL;DR: Greedy Perimeter Stateless Routing is presented, a novel routing protocol for wireless datagram networks that uses the positions of routers and a packet's destination to make packet forwarding decisions and its scalability on densely deployed wireless networks is demonstrated.
Abstract: We present Greedy Perimeter Stateless Routing (GPSR), a novel routing protocol for wireless datagram networks that uses the positions of routers and a packet's destination to make packet forwarding decisions. GPSR makes greedy forwarding decisions using only information about a router's immediate neighbors in the network topology. When a packet reaches a region where greedy forwarding is impossible, the algorithm recovers by routing around the perimeter of the region. By keeping state only about the local topology, GPSR scales better in per-router state than shortest-path and ad-hoc routing protocols as the number of network destinations increases. Under mobility's frequent topology changes, GPSR can use local topology information to find correct new routes quickly. We describe the GPSR protocol, and use extensive simulation of mobile wireless networks to compare its performance with that of Dynamic Source Routing. Our simulations demonstrate GPSR's scalability on densely deployed wireless networks.

7,384 citations


"A survey of void handling technique..." refers background or methods in this paper

  • ...Perimeter Routing: Perimeter routing, as the complete voidhandling technique in the GPSR protocol [ 10 ], consists of a planar traversal algorithm, a distributed planarization algorithm, as well as some other protocol optimizations....

    [...]

  • ...The positions of the neighboring nodes are accessed either from a centralized neighborhood table at the node [ 10 ] or in a distributed fashion via contention among neighboring nodes [29]....

    [...]

  • ...Figure 7 from [ 10 ] illustrates the RNG technique....

    [...]

  • ...Most of the packets reach their destinations by greedy forwarding only [ 10 ]....

    [...]

  • ...Figure 8 from [ 10 ] illustrates the Gabriel Graph technique....

    [...]

Proceedings ArticleDOI
01 Aug 1999
TL;DR: This paper proposes several schemes to reduce redundant rebroadcasts and differentiate timing of rebroadcast to alleviate the broadcast storm problem, which is identified by showing how serious it is through analyses and simulations.
Abstract: Broadcasting is a common operation in a network to resolve many issues. In a mobile ad hoc network (MANET) in particular, due to host mobility, such operations are expected to be executed more frequently (such as finding a route to a particular host, paging a particular host, and sending an alarm signal). Because radio signals are likely to overlap with others in a geographical area, a straightforward broadcasting by flooding is usually very costly and will result in serious redundancy, contention, and collision, to which we call the broadcast storm problem. In this paper, we identify this problem by showing how serious it is through analyses and simulations. We propose several schemes to reduce redundant rebroadcasts and differentiate timing of rebroadcasts to alleviate this problem. Simulation results are presented, which show different levels of improvement over the basic flooding approach.

3,819 citations


"A survey of void handling technique..." refers background in this paper

  • ...Although some efficient full flooding algorithms have been proposed in the literature [27], they still cost too much while handling voids, because only the destination node wishes to receive stuck packets from void nodes....

    [...]

Journal ArticleDOI
TL;DR: This work reviews localization techniques and evaluates the effectiveness of a very simple connectivity metric method for localization in outdoor environments that makes use of the inherent RF communications capabilities of these devices.
Abstract: Instrumenting the physical world through large networks of wireless sensor nodes, particularly for applications like environmental monitoring of water and soil, requires that these nodes be very small, lightweight, untethered, and unobtrusive. The problem of localization, that is, determining where a given node is physically located in a network, is a challenging one, and yet extremely crucial for many of these applications. Practical considerations such as the small size, form factor, cost and power constraints of nodes preclude the reliance on GPS of all nodes in these networks. We review localization techniques and evaluate the effectiveness of a very simple connectivity metric method for localization in outdoor environments that makes use of the inherent RF communications capabilities of these devices. A fixed number of reference points in the network with overlapping regions of coverage transmit periodic beacon signals. Nodes use a simple connectivity metric, which is more robust to environmental vagaries, to infer proximity to a given subset of these reference points. Nodes localize themselves to the centroid of their proximate reference points. The accuracy of localization is then dependent on the separation distance between two-adjacent reference points and the transmission range of these reference points. Initial experimental results show that the accuracy for 90 percent of our data points is within one-third of the separation distance. However, future work is needed to extend the technique to more cluttered environments.

3,723 citations


"A survey of void handling technique..." refers background in this paper

  • ...In recent years, with the rapid application of Global Positioning System (GPS) [3] and the progress on selfconfiguring localization mechanisms [4, 5], it has regained significant attention, as it provides a promising solution for information delivery in next-generation wireless networks, for example, Mobile Ad Hoc Networks (MANETs), Vehicular Ad Hoc Networks (VANETs), Wireless Sensor Networks (WSNs), and Wireless Mesh Networks (WMNs)....

    [...]

Proceedings ArticleDOI
16 Jul 2001
TL;DR: A novel approach to the localization of sensors in an ad-hoc network that enables sensor nodes to discover their locations using a set distributed iterative algorithms is described.
Abstract: The recent advances in radio and em beddedsystem technologies have enabled the proliferation of wireless microsensor networks. Such wirelessly connected sensors are released in many diverse environments to perform various monitoring tasks. In many such tasks, location awareness is inherently one of the most essential system parameters. It is not only needed to report the origins of events, but also to assist group querying of sensors, routing, and to answer questions on the network coverage. In this paper we present a novel approach to the localization of sensors in an ad-hoc network. We describe a system called AHLoS (Ad-Hoc Localization System) that enables sensor nodes to discover their locations using a set distributed iterative algorithms. The operation of AHLoS is demonstrated with an accuracy of a few centimeters using our prototype testbed while scalability and performance are studied through simulation.

2,931 citations