scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A survey on super-resolution imaging

03 Feb 2011-Signal, Image and Video Processing (Springer-Verlag)-Vol. 5, Iss: 3, pp 329-342
TL;DR: This paper provides a comprehensive review of SR image and video reconstruction methods developed in the literature and highlights the future research challenges.
Abstract: The key objective of super-resolution (SR) imaging is to reconstruct a higher-resolution image based on a set of images, acquired from the same scene and denoted as ‘low-resolution’ images, to overcome the limitation and/or ill-posed conditions of the image acquisition process for facilitating better content visualization and scene recognition. In this paper, we provide a comprehensive review of SR image and video reconstruction methods developed in the literature and highlight the future research challenges. The SR image approaches reconstruct a single higher-resolution image from a set of given lower-resolution images, and the SR video approaches reconstruct an image sequence with a higher-resolution from a group of adjacent lower-resolution image frames. Furthermore, several SR applications are discussed to contribute some insightful comments on future SR research directions. Specifically, the SR computations for multi-view images and the SR video computation in the temporal domain are discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: A survey on recent advances of image super-resolution techniques using deep learning approaches in a systematic way, which can roughly group the existing studies of SR techniques into three major categories: supervised SR, unsupervised SR, and domain-specific SR.
Abstract: Image Super-Resolution (SR) is an important class of image processing techniqueso enhance the resolution of images and videos in computer vision. Recent years have witnessed remarkable progress of image super-resolution using deep learning techniques. This article aims to provide a comprehensive survey on recent advances of image super-resolution using deep learning approaches. In general, we can roughly group the existing studies of SR techniques into three major categories: supervised SR, unsupervised SR, and domain-specific SR. In addition, we also cover some other important issues, such as publicly available benchmark datasets and performance evaluation metrics. Finally, we conclude this survey by highlighting several future directions and open issues which should be further addressed by the community in the future.

837 citations


Additional excerpts

  • ...Although there are some existing SR surveys in literature, our work differs in that we are focused in deep learning based SR techniques, while most of the earlier works [33], [34], [35], [36] aim at surveying traditional SR algorithms or some studies mainly concentrate on providing quantitative evaluations based on full-reference metrics or human visual perception [37], [38]....

    [...]

Journal ArticleDOI
Linwei Yue1, Huanfeng Shen1, Jie Li1, Qiangqiang Yuan1, Hongyan Zhang1, Liangpei Zhang1 
TL;DR: This paper aims to provide a review of SR from the perspective of techniques and applications, and especially the main contributions in recent years, and discusses the current obstacles for future research.

378 citations


Cites background from "A survey on super-resolution imagin..."

  • ...Early review papers have provided specific descriptions and explanations of those methods [4,8,14]....

    [...]

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a semi-supervised deep learning approach to recover high-resolution (HR) CT images from low resolution (LR) counterparts by enforcing the cycle-consistency in terms of the Wasserstein distance.
Abstract: In this paper, we present a semi-supervised deep learning approach to accurately recover high-resolution (HR) CT images from low-resolution (LR) counterparts. Specifically, with the generative adversarial network (GAN) as the building block, we enforce the cycle-consistency in terms of the Wasserstein distance to establish a nonlinear end-to-end mapping from noisy LR input images to denoised and deblurred HR outputs. We also include the joint constraints in the loss function to facilitate structural preservation. In this process, we incorporate deep convolutional neural network (CNN), residual learning, and network in network techniques for feature extraction and restoration. In contrast to the current trend of increasing network depth and complexity to boost the imaging performance, we apply a parallel ${1}\times {1}$ CNN to compress the output of the hidden layer and optimize the number of layers and the number of filters for each convolutional layer. The quantitative and qualitative evaluative results demonstrate that our proposed model is accurate, efficient and robust for super-resolution (SR) image restoration from noisy LR input images. In particular, we validate our composite SR networks on three large-scale CT datasets, and obtain promising results as compared to the other state-of-the-art methods.

257 citations

Journal ArticleDOI
TL;DR: In this article, a semi-supervised deep learning approach was proposed to recover high-resolution (HR) CT images from low resolution (LR) counterparts by enforcing the cycle-consistency in terms of Wasserstein distance to establish a nonlinear end-to-end mapping from noisy LR input images to denoised and deblurred HR outputs.
Abstract: Computed tomography (CT) is widely used in screening, diagnosis, and image-guided therapy for both clinical and research purposes. Since CT involves ionizing radiation, an overarching thrust of related technical research is development of novel methods enabling ultrahigh quality imaging with fine structural details while reducing the X-ray radiation. In this paper, we present a semi-supervised deep learning approach to accurately recover high-resolution (HR) CT images from low-resolution (LR) counterparts. Specifically, with the generative adversarial network (GAN) as the building block, we enforce the cycle-consistency in terms of the Wasserstein distance to establish a nonlinear end-to-end mapping from noisy LR input images to denoised and deblurred HR outputs. We also include the joint constraints in the loss function to facilitate structural preservation. In this deep imaging process, we incorporate deep convolutional neural network (CNN), residual learning, and network in network techniques for feature extraction and restoration. In contrast to the current trend of increasing network depth and complexity to boost the CT imaging performance, which limit its real-world applications by imposing considerable computational and memory overheads, we apply a parallel $1\times1$ CNN to compress the output of the hidden layer and optimize the number of layers and the number of filters for each convolutional layer. Quantitative and qualitative evaluations demonstrate that our proposed model is accurate, efficient and robust for super-resolution (SR) image restoration from noisy LR input images. In particular, we validate our composite SR networks on three large-scale CT datasets, and obtain promising results as compared to the other state-of-the-art methods.

242 citations

Book ChapterDOI
22 Sep 2013
TL;DR: A novel algorithm for the estimation of high-resolution cardiac MR images from single short-axis cardiac MR image stacks using an innovative super-resolution model which does not require explicit motion estimation and can be used for the reproducible estimation of 3D cardiac functional indices.
Abstract: The accurate measurement of 3D cardiac function is an important task in the analysis of cardiac magnetic resonance (MR) images. However, short-axis image acquisitions with thick slices are commonly used in clinical practice due to constraints of acquisition time, signal-to-noise ratio and patient compliance. In this situation, the estimation of a high-resolution image can provide an approximation of the underlaying 3D measurements. In this paper, we develop a novel algorithm for the estimation of high-resolution cardiac MR images from single short-axis cardiac MR image stacks. First, we propose to use a novel approximate global search approach to find patch correspondence between the short-axis MR image and a set of atlases. Then, we propose an innovative super-resolution model which does not require explicit motion estimation. Finally, we build an expectation-maximization framework to optimize the model. We validate the proposed approach using images from 19 subjects with 200 atlases and show that the proposed algorithm significantly outperforms conventional interpolation such as linear or B-spline interpolation. In addition, we show that the super-resolved images can be used for the reproducible estimation of 3D cardiac functional indices.

242 citations


Cites background or methods from "A survey on super-resolution imagin..."

  • ...The LR images are considered to be degraded versions of the SR image undergoing blurring, downsampling and the addition of noise [6,7,4]....

    [...]

  • ...One of the most common approaches to the super-resolution problem is to use the maximum likelihood (ML) or maximum a posteriori (MAP) estimation [4]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, a modified Monte Carlo integration over configuration space is used to investigate the properties of a two-dimensional rigid-sphere system with a set of interacting individual molecules, and the results are compared to free volume equations of state and a four-term virial coefficient expansion.
Abstract: A general method, suitable for fast computing machines, for investigating such properties as equations of state for substances consisting of interacting individual molecules is described. The method consists of a modified Monte Carlo integration over configuration space. Results for the two‐dimensional rigid‐sphere system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared to the free volume equation of state and to a four‐term virial coefficient expansion.

35,161 citations


"A survey on super-resolution imagin..." refers methods in this paper

  • ...The Monte Carlo method [ 83 ] aims to provide an accurate estimation of the unknown target (i.e., the highresolution image) through stochastic simulations....

    [...]

  • ...By further incorporating the first-order Markov chain property (that is, the generation of the current sample only depends on the previous one) into the Monte Carlo method [ 83 ] for generating sufficiently large number of reliable samples as mentioned above, the established Markov chain Monte Carlo (MCMC) process is exploited to develop a novel stochastic SR approach in [50]....

    [...]

  • ...For that, the Monte Carlo method [ 83 ] has been considered as a promising approach, since it provides an extremely powerful and efficient way to compute the statistics of any complicate distribution....

    [...]

Book
01 Jan 1959
TL;DR: In this paper, the authors discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals, including interference, interferometers, and diffraction.
Abstract: The book is comprised of 15 chapters that discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals. The text covers the elements of the theories of interference, interferometers, and diffraction. The book tackles several behaviors of light, including its diffraction when exposed to ultrasonic waves.

19,815 citations

01 Oct 1999
TL;DR: In this article, the authors discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals, including interference, interferometers, and diffraction.
Abstract: The book is comprised of 15 chapters that discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals. The text covers the elements of the theories of interference, interferometers, and diffraction. The book tackles several behaviors of light, including its diffraction when exposed to ultrasonic waves.

19,503 citations

Journal ArticleDOI
TL;DR: This paper presents a new approach to single-image superresolution, based upon sparse signal representation, which generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods.
Abstract: This paper presents a new approach to single-image superresolution, based upon sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low-resolution and high-resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low-resolution image patch can be applied with the high-resolution image patch dictionary to generate a high-resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs , reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution (SR) and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle SR with noisy inputs in a more unified framework.

4,958 citations


"A survey on super-resolution imagin..." refers background or methods in this paper

  • ...Recent research on the studies of image statistics suggests that image patches can be represented as a sparse linear combination of elements from an over-complete image patch dictionary [72–74]....

    [...]

  • ...In general, the SR image techniques can be classified into four classes: (i) frequencydomain-based approach [21,38–43], (ii) interpolation-based approach [44–47], (iii) regularization-based approach [48– 66], and (iv) learning-based approach [67–74]....

    [...]