scispace - formally typeset
Search or ask a question
Journal ArticleDOI

α-Synuclein Misfolding Versus Aggregation Relevance to Parkinson's Disease: Critical Assessment and Modeling.

TL;DR: A novel critical assessment to understand the misfolding biology of synuclein and its relevance to Parkinson’s disease is developed.
Abstract: α-Synuclein, an abundant and conserved presynaptic brain protein, is implicated as a critical factor in Parkinson’s disease (PD). The aggregation of α-synuclein is believed to be a critical event in the disease process. α-Synuclein is characterized by a remarkable conformational plasticity, adopting different conformations depending on the environment. Therefore, it is classified as an “intrinsically disordered protein.” Recently, a debate has challenged the view on the intrinsically disordered behavior of α-synuclein in the cell. It has been proposed that α-synuclein is a stable tetramer with a low propensity for aggregation; however, its destabilization leads to protein misfolding and its aggregation kinetics. In our critical analysis, we discussed about major issues: (i) why α-synuclein conformational behavior does not fit into the normal secondary structural characteristics of proteins, (ii) potential amino acids involved in the complexity of misfolding in α-synuclein that leads to aggregation, and (iii) the role of metals in misfolding and aggregation. To evaluate the above critical issues, we developed bioinformatics models related to secondary and tertiary conformations, Ramachandran plot, free energy change, intrinsic disordered prediction, solvent accessibility, and FoldIndex pattern. To the best of our knowledge, this is a novel critical assessment to understand the misfolding biology of synuclein and its relevance to Parkinson’s disease.
Citations
More filters
Journal Article

131 citations

Journal ArticleDOI
TL;DR: The modulation of proteasome assembly by the small molecule TCH-165 is reported, resulting in an increase in 20S levels, which corresponds to enhanced proteolysis of IDPs, including α-synuclein, tau, ornithine decarboxylase, and c-Fos, but not structured proteins.
Abstract: The 20S proteasome is the main protease that directly targets intrinsically disordered proteins (IDPs) for proteolytic degradation. Mutations, oxidative stress, or aging can induce the buildup of IDPs resulting in incorrect signaling or aggregation, associated with the pathogenesis of many cancers and neurodegenerative diseases. Drugs that facilitate 20S-mediated proteolysis therefore have many potential therapeutic applications. We report herein the modulation of proteasome assembly by the small molecule TCH-165, resulting in an increase in 20S levels. The increase in the level of free 20S corresponds to enhanced proteolysis of IDPs, including α-synuclein, tau, ornithine decarboxylase, and c-Fos, but not structured proteins. Clearance of ubiquitinated protein was largely maintained by single capped proteasome complexes (19S-20S), but accumulation occurs when all 19S capped proteasome complexes are depleted. This study illustrates the first example of a small molecule capable of targeting disordered proteins for degradation by regulating the dynamic equilibrium between different proteasome complexes.

45 citations


Cites background from "α-Synuclein Misfolding Versus Aggre..."

  • ...has great potential for the treatment of multiple human diseases.(3-7)...

    [...]

  • ...(2) Not surprisingly, accumulation of IDPs can lead to harmful signaling events directly associated with the pathogenesis of many human diseases.(3-7) Unfortunately, the lack of a defined 3-D structure has also impeded traditional small molecule-binding pocket drug design approaches to block the many detrimental effects of amassed IDPs....

    [...]

Journal ArticleDOI
TL;DR: The current evidence supporting this type of approach is reviewed, suggesting that such rational therapy combinations, together with the use of multi‐target drugs, may hold promise as the next logical step for the treatment of synucleinopathies.
Abstract: Currently there are no disease-modifying alternatives for the treatment of most neurodegenerative disorders. The available therapies for diseases such as Parkinson's disease (PD), PD dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), in which the protein alpha-synuclein (α-Syn) accumulates within neurons and glial cells with toxic consequences, are focused on managing the disease symptoms. However, using strategic drug combinations and/or multi-target drugs might increase the treatment efficiency when compared with monotherapies. Synucleinopathies are complex disorders that progress through several stages, and toxic α-Syn aggregates exhibit prion-like behavior spreading from cell to cell. Therefore, it follows that these neurodegenerative disorders might require equally complex therapeutic approaches to obtain significant and long-lasting results. Hypothetically, therapies aimed at reducing α-Syn accumulation and cell-to-cell transfer, such as immunotherapy against α-Syn, could be combined with agents that reduce neuroinflammation with potential synergistic outcomes. Here we review the current evidence supporting this type of approach, suggesting that such rational therapy combinations, together with the use of multi-target drugs, may hold promise as the next logical step for the treatment of synucleinopathies.

45 citations

Journal ArticleDOI
TL;DR: Potential opportunities and pharmacological approaches targeting &agr;‐syn, tau and A&bgr; and their oligomeric forms are highlighted with examples from recent studies, and protein aggregation as a biomarker of NDs, in both the brain and peripheral fluids is deeply explored.

41 citations

Journal ArticleDOI
TL;DR: Novel insights are provided into possible mechanism of α-synuclein aggregation and promising neuroprotective strategy that could aid alleviate PD and its symptoms are provided.
Abstract: The α-synuclein is a major component of amyloid fibrils found in Lewy bodies, the characteristic intracellular proteinaceous deposits which are pathological hallmarks of neurodegenerative diseases such as Parkinson’s disease (PD) and dementia. It is an intrinsically disordered protein that may undergo dramatic structural changes to form amyloid fibrils. Aggregation process from α-synuclein monomers to amyloid fibrils through oligomeric intermediates is considered as the disease-causative toxic mechanism. However, mechanism underlying aggregation is not well-known despite several attempts. To characterize the mechanism, we have explored the effects of pH and temperature on the structural properties of wild-type and mutant α-synuclein using molecular dynamics (MD) simulation technique. MD studies suggested that amyloid fibrils can grow by monomer. Conformational transformation of the natively unfolded protein into partially folded intermediate could be accountable for aggregation and fibrillation. An intermediate α-strand was observed in the hydrophobic non-amyloid-β component (NAC) region of α-synuclein that could proceed to α-sheet and initiate early assembly events. Water network around the intermediate was analyzed to determine its influence on the α-strand structure. Findings of this study provide novel insights into possible mechanism of α-synuclein aggregation and promising neuroprotective strategy that could aid alleviate PD and its symptoms.

34 citations

References
More filters
Journal ArticleDOI
27 Jun 1997-Science
TL;DR: A mutation was identified in the α-synuclein gene, which codes for a presynaptic protein thought to be involved in neuronal plasticity, in the Italian kindred and in three unrelated families of Greek origin with autosomal dominant inheritance for the PD phenotype.
Abstract: Parkinson's disease (PD) is a common neurodegenerative disorder with a lifetime incidence of approximately 2 percent. A pattern of familial aggregation has been documented for the disorder, and it was recently reported that a PD susceptibility gene in a large Italian kindred is located on the long arm of human chromosome 4. A mutation was identified in the α-synuclein gene, which codes for a presynaptic protein thought to be involved in neuronal plasticity, in the Italian kindred and in three unrelated families of Greek origin with autosomal dominant inheritance for the PD phenotype. This finding of a specific molecular alteration associated with PD will facilitate the detailed understanding of the pathophysiology of the disorder.

7,387 citations

Journal ArticleDOI
28 Aug 1997-Nature
TL;DR: Strong staining of Lewy bodies from idiopathic Parkinson's disease with antibodies for α-synuclein, a presynaptic protein of unknown function which is mutated in some familial cases of the disease, indicates that the LewY bodies from these two diseases may have identical compositions.
Abstract: Lewy bodies, a defining pathological characteristic of Parkinson's disease and dementia with Lewy bodies (DLB)1,2,3,4, constitute the second most common nerve cell pathology, after the neurofibrillary lesions of Alzheimer's disease. Their formation may cause neurodegeneration, but their biochemical composition is unknown. Neurofilaments and ubiquitin are present5,6,7,8, but it is unclear whether they are major components of the filamentous material of the Lewy body9,10. Here we describe strong staining of Lewy bodies from idiopathic Parkinson's disease with antibodies for α-synuclein, a presynaptic protein of unknown function which is mutated in some familial cases of the disease11. α-Synuclein may be the main component of the Lewy body in Parkinson's disease. We also show staining for α-synuclein of Lewy bodies from DLB, indicating that the Lewy bodies from these two diseases may have identical compositions.

6,923 citations

Journal ArticleDOI
TL;DR: The iterative threading assembly refinement (I-TASSER) server is an integrated platform for automated protein structure and function prediction based on the sequence- to-structure-to-function paradigm.
Abstract: The iterative threading assembly refinement (I-TASSER) server is an integrated platform for automated protein structure and function prediction based on the sequence-to-structure-to-function paradigm. Starting from an amino acid sequence, I-TASSER first generates three-dimensional (3D) atomic models from multiple threading alignments and iterative structural assembly simulations. The function of the protein is then inferred by structurally matching the 3D models with other known proteins. The output from a typical server run contains full-length secondary and tertiary structure predictions, and functional annotations on ligand-binding sites, Enzyme Commission numbers and Gene Ontology terms. An estimate of accuracy of the predictions is provided based on the confidence score of the modeling. This protocol provides new insights and guidelines for designing of online server systems for the state-of-the-art protein structure and function predictions. The server is available at http://zhanglab.ccmb.med.umich.edu/I-TASSER.

5,792 citations


"α-Synuclein Misfolding Versus Aggre..." refers methods in this paper

  • ...(iv) I-Tasser and PSIPRED automated structure modeling servers used to generate WT, lipid-bound, and α-synuclein mutants predicted 3D structural models [29–31]....

    [...]

Journal ArticleDOI
TL;DR: The AQUA and PROCHECK-NMR programs provide a means of validating the geometry and restraint violations of an ensemble of protein structures solved by solution NMR, and their outputs include a detailed breakdown of the restraint violations.
Abstract: The AQUA and PROCHECK-NMR programs provide a means of validating the geometry and restraint violations of an ensemble of protein structures solved by solution NMR. The outputs include a detailed breakdown of the restraint violations, a number of plots in PostScript format and summary statistics. These various analyses indicate both the degree of agreement of the model structures with the experimental dat, and the quality of their geometrical properties. They are intended to be of use both to support ongoing NMR structure determination and in the validation of the final results.

4,926 citations


"α-Synuclein Misfolding Versus Aggre..." refers methods in this paper

  • ...5) is used as tool to understand if the predicted lipid-bound, free WT, and αsynuclein mutant structures have any backbone conformation preference [35]....

    [...]

Journal ArticleDOI
Yang Zhang1
TL;DR: The I-TASSER server has been developed to generate automated full-length 3D protein structural predictions where the benchmarked scoring system helps users to obtain quantitative assessments of the I- TASSER models.
Abstract: Prediction of 3-dimensional protein structures from amino acid sequences represents one of the most important problems in computational structural biology. The community-wide Critical Assessment of Structure Prediction (CASP) experiments have been designed to obtain an objective assessment of the state-of-the-art of the field, where I-TASSER was ranked as the best method in the server section of the recent 7th CASP experiment. Our laboratory has since then received numerous requests about the public availability of the I-TASSER algorithm and the usage of the I-TASSER predictions. An on-line version of I-TASSER is developed at the KU Center for Bioinformatics which has generated protein structure predictions for thousands of modeling requests from more than 35 countries. A scoring function (C-score) based on the relative clustering structural density and the consensus significance score of multiple threading templates is introduced to estimate the accuracy of the I-TASSER predictions. A large-scale benchmark test demonstrates a strong correlation between the C-score and the TM-score (a structural similarity measurement with values in [0, 1]) of the first models with a correlation coefficient of 0.91. Using a C-score cutoff > -1.5 for the models of correct topology, both false positive and false negative rates are below 0.1. Combining C-score and protein length, the accuracy of the I-TASSER models can be predicted with an average error of 0.08 for TM-score and 2 A for RMSD. The I-TASSER server has been developed to generate automated full-length 3D protein structural predictions where the benchmarked scoring system helps users to obtain quantitative assessments of the I-TASSER models. The output of the I-TASSER server for each query includes up to five full-length models, the confidence score, the estimated TM-score and RMSD, and the standard deviation of the estimations. The I-TASSER server is freely available to the academic community at http://zhang.bioinformatics.ku.edu/I-TASSER .

4,754 citations