scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A tactual size aftereffect contingent on hand position.

01 Oct 1974-Journal of Experimental Psychology (J Exp Psychol)-Vol. 103, Iss: 4, pp 668-674
About: This article is published in Journal of Experimental Psychology.The article was published on 1974-10-01. It has received 24 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: The view suggests a new interpretation of the McCollough effect and accounts for findings difficult to account for in other interpretations including which stimuli can successfully lead to contingent after-effects, the outcome of correlation manipulations, and why the effect exists at all.

57 citations


Cites background from "A tactual size aftereffect continge..."

  • ...For instance, when t~ . . . . it-length rectangles were felt with the hand while each was paired with a different hand position, opposite-length after-effects became contingent on the different hand positions (Walker & Shea, 1974)....

    [...]

Journal ArticleDOI
TL;DR: It is concluded that the haptic aftereffect of curved surfaces is an important effect that occurs almost instantaneously and lasts for an appreciable period.
Abstract: A haptic aftereffect of curved surfaces is demonstrated. Two spherical surfaces were presented sequentially to human subjects. They rested one hand on the first (conditioning) surface. After a fixed conditioning period they transferred their hand to the second (test) surface and judged whether the test surface was convex or concave. In experiment 1 the curvature of the conditioning surface was varied; the subject's judgment of convexity or concavity of the test surface was strongly shifted in the direction opposite to the curvature of the conditioning surface (negative aftereffect). Therefore, subjects judged a flat surface to be concave after being exposed to a convex surface. After a conditioning period of 5 s the shift was about 20% of the curvature of the conditioning surface. In experiment 2 the duration of the conditioning period was varied; the magnitude of the aftereffect could be described by a first-order integrator with a time constant of 2 s. In experiment 3 the time interval between the conditioning period and the touching of the second surface was varied; the magnitude of the aftereffect could be described by an exponential decay with a time constant of 40 s. It is concluded that the haptic aftereffect of curved surfaces is an important effect that occurs almost instantaneously and lasts for an appreciable period.

49 citations

Journal ArticleDOI
D. Skowbo1

44 citations

Journal ArticleDOI
TL;DR: The nature of the aftereffects are investigated, demonstrating that they are orientation- and skin-region–specific, occur even when just one hand is adapted, do not transfer either contralaterally or across the palm and dorsum, and are defined in a skin-centered, rather than an external, reference frame.
Abstract: The stage at which processing of tactile distance occurs is still debated. We addressed this issue by implementing an adaptation-aftereffect paradigm with passive touch. We demonstrated the presence of a strong aftereffect, induced by the simultaneous presentation of pairs of tactile stimuli. After adaptation to two different distances, one on each hand, participants systematically perceived a subsequent stimulus delivered to the hand adapted to the smaller distance as being larger. We further investigated the nature of the aftereffects, demonstrating that they are orientation- and skin-region–specific, occur even when just one hand is adapted, do not transfer either contralaterally or across the palm and dorsum, and are defined in a skin-centered, rather than an external, reference frame. These characteristics of tactile distance aftereffects are similar to those of low-level visual aftereffects, supporting the idea that distance perception arises at early stages of tactile processing.

40 citations


Cites background from "A tactual size aftereffect continge..."

  • ...In addition, lack of intermanual transfer has been demonstrated for size aftereffects through dynamic finger exploration of bars (39)....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated that relative cue weights vary rapidly as a function of recently experienced stimulus statistics and that the brain can use different statistical models for different object categories.
Abstract: The informativeness of sensory cues depends critically on statistical regularities in the environment. However, statistical regularities vary between different object categories and environments. We asked whether and how the brain changes the prior assumptions about scene statistics used to interpret visual depth cues when stimulus statistics change. Subjects judged the slants of stereoscopically presented figures by adjusting a virtual probe perpendicular to the surface. In addition to stereoscopic disparities, the aspect ratio of the stimulus in the image provided a “figural compression” cue to slant, whose reliability depends on the distribution of aspect ratios in the world. As we manipulated this distribution from regular to random and back again, subjects’ reliance on the compression cue relative to stereoscopic cues changed accordingly. When we randomly interleaved stimuli from shape categories (ellipses and diamonds) with different statistics, subjects gave less weight to the compression cue for figures from the category with more random aspect ratios. Our results demonstrate that relative cue weights vary rapidly as a function of recently experienced stimulus statistics and that the brain can use different statistical models for different object categories. We show that subjects’ behavior is consistent with that of a broad class of Bayesian learning models.

38 citations

References
More filters
Journal ArticleDOI
TL;DR: The striate cortex was studied in lightly anaesthetized macaque and spider monkeys by recording extracellularly from single units and stimulating the retinas with spots or patterns of light, with response properties very similar to those previously described in the cat.
Abstract: 1. The striate cortex was studied in lightly anaesthetized macaque and spider monkeys by recording extracellularly from single units and stimulating the retinas with spots or patterns of light. Most cells can be categorized as simple, complex, or hypercomplex, with response properties very similar to those previously described in the cat. On the average, however, receptive fields are smaller, and there is a greater sensitivity to changes in stimulus orientation. A small proportion of the cells are colour coded. 2. Evidence is presented for at least two independent systems of columns extending vertically from surface to white matter. Columns of the first type contain cells with common receptive-field orientations. They are similar to the orientation columns described in the cat, but are probably smaller in cross-sectional area. In the second system cells are aggregated into columns according to eye preference. The ocular dominance columns are larger than the orientation columns, and the two sets of boundaries seem to be independent. 3. There is a tendency for cells to be grouped according to symmetry of responses to movement; in some regions the cells respond equally well to the two opposite directions of movement of a line, but other regions contain a mixture of cells favouring one direction and cells favouring the other. 4. A horizontal organization corresponding to the cortical layering can also be discerned. The upper layers (II and the upper two-thirds of III) contain complex and hypercomplex cells, but simple cells are virtually absent. The cells are mostly binocularly driven. Simple cells are found deep in layer III, and in IV A and IV B. In layer IV B they form a large proportion of the population, whereas complex cells are rare. In layers IV A and IV B one finds units lacking orientation specificity; it is not clear whether these are cell bodies or axons of geniculate cells. In layer IV most cells are driven by one eye only; this layer consists of a mosaic with cells of some regions responding to one eye only, those of other regions responding to the other eye. Layers V and VI contain mostly complex and hypercomplex cells, binocularly driven. 5. The cortex is seen as a system organized vertically and horizontally in entirely different ways. In the vertical system (in which cells lying along a vertical line in the cortex have common features) stimulus dimensions such as retinal position, line orientation, ocular dominance, and perhaps directionality of movement, are mapped in sets of superimposed but independent mosaics. The horizontal system segregates cells in layers by hierarchical orders, the lowest orders (simple cells monocularly driven) located in and near layer IV, the higher orders in the upper and lower layers.

6,388 citations

Journal ArticleDOI
03 Sep 1965-Science
TL;DR: An aftereffect of color which depends on the orientation of lines in the test field may be obtained by presenting a horizontal grating of one color alternately with a vertical grates of a different color.
Abstract: An aftereffect of color which depends on the orientation of lines in the test field may be obtained by presenting a horizontal grating of one color alternately with a vertical grating of a different color. Like the aftereffect of adaptation to chromatic fringes produced by prismatic spectacles, this aftereffect is visible in monochromatic light and fails to show inter-ocular transfer. It is suggested that both effects are to be understood in terms of color adaptation of orientation-specific edge-detectors.

765 citations

Journal ArticleDOI
TL;DR: This article found contingent movement aftereffects (CMAEs) lasting several days, contingent upon the color, intensity, and stripe width of moving patterns of a patterned disk rotating clockwise under red light, alternating every 10 seconds with counter-clockwise under green light.
Abstract: We have found contingent movement aftereffects (CMAEs) lasting several days, contingent upon the color, intensity, and stripe width of moving patterns. Ss adapted for 10 min to a patterned disk rotating clockwise under red light, alternating every 10 sec with counterclockwise under green light. When stopped, the disk then appeared to rotate counterclockwise under red light and clockwise under green light. The effect lasted only a second or two, reappearing each time the field’s color was changed. But it increased in strength over the first 1/2 hand was still present 1 or 2 days later. Color transposition effects were found: after adaptation to red-clockwise (long wavelength) alternating with green-counterclockwise (short wavelength), a stationary yellow (long wavelength) test field appeared to rotate counterclockwise and a blue (short wavelength) field appeared to rotate clockwise. Relative, not absolute, color of the test triggered the CMAE. Similar CMAEs and transposition effects were produced by pairing direction of movement with intensity, with width of moving stripes and with orientation of a stationary grating projected onto a rotating patterned disk.

136 citations