scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A technique for the quantitative evaluation of dose distributions

01 May 1998-Medical Physics (American Association of Physicists in Medicine)-Vol. 25, Iss: 5, pp 656-661
TL;DR: A composite distribution has recently been developed that presents the dose difference in regions that fail both dose-difference and DTA comparison criteria, and a technique is developed to unify dose distribution comparisons using the acceptance criteria.
Abstract: The commissioning of a three-dimensional treatment planning system requires comparisons of measured and calculated dose distributions. Techniques have been developed to facilitate quantitative comparisons, including superimposed isodoses, dose-difference, and distance-to-agreement (DTA) distributions. The criterion for acceptable calculation performance is generally defined as a tolerance of the dose and DTA in regions of low and high dose gradients, respectively. The dose difference and DTA distributions complement each other in their useful regions. A composite distribution has recently been developed that presents the dose difference in regions that fail both dose-difference and DTA comparison criteria. Although the composite distribution identifies locations where the calculation fails the preselected criteria, no numerical quality measure is provided for display or analysis. A technique is developed to unify dose distribution comparisons using the acceptance criteria. The measure of acceptability is the multidimensional distance between the measurement and calculation points in both the dose and the physical distance, scaled as a fraction of the acceptance criteria. In a space composed of dose and spatial coordinates, the acceptance criteria form an ellipsoid surface, the major axis scales of which are determined by individual acceptance criteria and the center of which is located at the measurement point in question. When the calculated dose distribution surface passes through the ellipsoid, the calculation passes the acceptance test for the measurement point. The minimum radial distance between the measurement point and the calculation points (expressed as a surface in the dose–distance space) is termed the γ index. Regions where γ>1 correspond to locations where the calculation does not meet the acceptance criteria. The determination of γ throughout the measured dose distribution provides a presentation that quantitatively indicates the calculation accuracy. Examples of a 6 MV beam penumbra are used to illustrate the γ index.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: AAPM Task Group 119 has produced quantitative confidence limits as baseline expectation values for IMRT commissioning and locally derived confidence limits that substantially exceed these baseline values may indicate the need for improved IM RT commissioning.
Abstract: AAPM Task Group 119 has produced quantitative confidence limits as baseline expectation values for IMRT commissioning. A set of test cases was developed to assess the overall accuracy of planning and delivery of IMRT treatments. Each test uses contours of targets and avoidance structures drawn within rectangular phantoms. These tests were planned, delivered, measured, and analyzed by nine facilities using a variety of IMRT planning and delivery systems. Each facility had passed the Radiological Physics Center credentialing tests for IMRT. The agreement between the planned and measured doses was determined using ion chamber dosimetry in high and low dose regions, film dosimetry on coronal planes in the phantom with all fields delivered, and planar dosimetry for each field measured perpendicular to the central axis. The planar dose distributions were assessed using gamma criteria of 3%/3 mm. The mean values and standard deviations were used to develop confidence limits for the test results using the concept confidence limit = /mean/ + 1.96sigma. Other facilities can use the test protocol and results as a basis for comparison to this group. Locally derived confidence limits that substantially exceed these baseline values may indicate the need for improved IMRT commissioning.

854 citations

Journal ArticleDOI
TL;DR: The framework and guidance is provided to allow radiation oncology physicists to design comprehensive and practical treatment planning QA programs for their clinics, and the scope of the QA needs for treatment planning is quite broad, encompassing image-based definition of patient anatomy.
Abstract: In recent years, the sophistication and complexity of clinical treatment planning and treatment planning systems has increased significantly, particularly including three-dimensional (3D) treatment planning systems, and the use of conformal treatment planning and delivery techniques. This has led to the need for a comprehensive set of quality assurance (QA) guidelines that can be applied to clinical treatment planning. This document is the report of Task Group 53 of the Radiation Therapy Committee of the American Association of Physicists in Medicine. The purpose of this report is to guide and assist the clinical medical physicist in developing and implementing a comprehensive but viable program of quality assurance for modern radiotherapy treatment planning. The scope of the QA needs for treatment planning is quite broad, encompassing image-based definition of patient anatomy, 3D beam descriptions for complex beams including multileaf collimator apertures, 3D dose calculation algorithms, and complex plan evaluation tools including dose volume histograms. The Task Group recommends an organizational framework for the task of creating a QA program which is individualized to the needs of each institution and addresses the issues of acceptance testing, commissioning the planning system and planning process, routine quality assurance, and ongoing QA of the planning process. This report, while not prescribing specific QA tests, provides the framework and guidance to allow radiation oncology physicists to design comprehensive and practical treatment planning QA programs for their clinics.

812 citations

Journal ArticleDOI
TL;DR: 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound, and clinical dosimetry applications of polymer gel Dosimetry are presented.
Abstract: Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

784 citations

Journal ArticleDOI
TL;DR: The gamma distribution behavior in two dimensions is examined and the gamma quantity, calculated independently for each reference point, is the minimum distance in the renormalized multidimensional space between the evaluated distribution and the reference point.
Abstract: The gamma tool was developed to quantitatively compare dose distributions, either measured or calculated. Before computing gamma, the dose and distance scales of the two distributions, referred to as evaluated and reference, are renormalized by dose and distance criteria, respectively. The renormalization allows the dose distribution comparison to be conducted simultaneously along dose and distance axes. The gamma quantity, calculated independently for each reference point, is the minimum distance in the renormalized multidimensional space between the evaluated distribution and the reference point. The gamma quantity degenerates to the dose-difference and distance-to-agreement tests in shallow and very steep dose gradient regions, respectively. Since being introduced, the gamma quantity has been used by investigators to evaluate dose calculation algorithms, and compare dosimetry measurements. This manuscript examines the gamma distribution behavior in two dimensions and evaluates the gamma distribution in the presence of data noise. Noise in the evaluated distribution causes the gamma distribution to be underestimated relative to the no-noise, condition. Noise in the reference distribution adds noise in the gamma distribution in proportion to the normalized dose noise. In typical clinical use, the fraction of points that exceed 3% and 3 mm can be extensive, so we typically use 5% and 2-3 mm in clinical evaluations. For clinical cases, the calculation time is typically 5 minutes for a 1 x 1 mm2 interpolated resolution on an 800 MHz Pentium 4 for a 14.1 x 15.2 cm2 radiographic film.

706 citations

Journal ArticleDOI
TL;DR: Recommendations on delivery methods, data interpretation, dose normalization, the use of γ analysis routines and choice of tolerance limits for IMRT QA are made with focus on detecting differences between calculated and measured doses via the useof robust analysis methods and an in-depth understanding of IMRT verification metrics.
Abstract: Purpose Patient-specific IMRT QA measurements are important components of processes designed to identify discrepancies between calculated and delivered radiation doses. Discrepancy tolerance limits are neither well defined nor consistently applied across centers. The AAPM TG-218 report provides a comprehensive review aimed at improving the understanding and consistency of these processes as well as recommendations for methodologies and tolerance limits in patient-specific IMRT QA. Methods The performance of the dose difference/distance-to-agreement (DTA) and γ dose distribution comparison metrics are investigated. Measurement methods are reviewed and followed by a discussion of the pros and cons of each. Methodologies for absolute dose verification are discussed and new IMRT QA verification tools are presented. Literature on the expected or achievable agreement between measurements and calculations for different types of planning and delivery systems are reviewed and analyzed. Tests of vendor implementations of the γ verification algorithm employing benchmark cases are presented. Results Operational shortcomings that can reduce the γ tool accuracy and subsequent effectiveness for IMRT QA are described. Practical considerations including spatial resolution, normalization, dose threshold, and data interpretation are discussed. Published data on IMRT QA and the clinical experience of the group members are used to develop guidelines and recommendations on tolerance and action limits for IMRT QA. Steps to check failed IMRT QA plans are outlined. Conclusion Recommendations on delivery methods, data interpretation, dose normalization, the use of γ analysis routines and choice of tolerance limits for IMRT QA are made with focus on detecting differences between calculated and measured doses via the use of robust analysis methods and an in-depth understanding of IMRT verification metrics. The recommendations are intended to improve the IMRT QA process and establish consistent, and comparable IMRT QA criteria among institutions.

511 citations

References
More filters
Journal ArticleDOI
TL;DR: This report deals with a comprehensive commissioning and ongoing quality assurance program specifically for treatment planning computers for commercial computerized treatment planning systems.
Abstract: The process of radiation therapy is complex and involves many steps. At each step, comprehensive quality assurance procedures are required to ensure the safe and accurate delivery of a prescribed radiation dose. This report deals with a comprehensive commissioning and ongoing quality assurance program specifically for treatment planning computers. Detailed guidelines are provided under the following topics: (a) computer program and system documentation and user training, (b) sources of uncertainties and suggested tolerances, (c) initial system checks, (d) repeated system checks, (e) quality assurance through manual procedures, and in vivo dosimetry, and (f) some additional considerations including administration and manpower requirements. In the context of commercial computerized treatment planning systems, uncertainty estimates and achievable criteria of acceptability are presented for: (a) external photon beams, (b) electron beams, (c) brachytherapy, and (d) treatment machine setting calculations. Although these criteria of acceptability appear large, they approach the limit achievable with most of today's treatment planning systems. However, developers of new or improved dose calculation algorithms should strive for the goal recommended by the International Commission of Radiation Units and Measurements of 2% in relative dose accuracy in low dose gradients or 2 mm spatial accuracy in regions with high dose gradients. For brachytherapy, the aim should be 3% accuracy in dose at distances of 0.5 cm or more at any point for any radiation source. Details are provided for initial commissioning tests and follow-up reproducibility tests. The final quality assurance for each patient is to perform an independent manual check of at least one point in the dose distributions, as well as the machine setting calculation. As a check of the overall treatment planning process, in vivo dosimetry should be performed on a select number of patients.

544 citations

Journal ArticleDOI
TL;DR: The composite evaluation provides a method for the physicist to efficiently identify regions that fail both the dose-difference and DTA acceptance criteria, and provides a computer platform for the quantitative comparison of calculated and measured dose distributions.
Abstract: Current methods for evaluating modern radiation therapy treatment planning (RTP) systems include the manual superposition of calculated and measured isodose curves and the comparison of a limited number of calculated and measured point doses. Both techniques have significant limitations in providing quantitative evaluations of the large number of dose data generated by modern RTP systems. More sophisticated comparison techniques have been presented in the literature, including dose-difference and distance-to-agreement (DTA) analyses. A software tool has been developed that uses superimposed isodose plots, dose-difference, and DTA distributions to quantify errors in computed dose distributions. Dose-difference and DTA analyses are overly sensitive in regions of high- and low-dose gradient, respectively. The logical union of locations that fail both dose-difference and DTA acceptance criteria, termed the composite evaluation, is calculated and displayed. The composite evaluation provides a method for the physicist to efficiently identify regions that fail both the dose-difference and DTA acceptance criteria. The tool provides a computer platform for the quantitative comparison of calculated and measured dose distributions.

160 citations

Journal ArticleDOI
TL;DR: A set of 14 experiments that measured dose distributions for 28 unique beam-phantom configurations that simulated various patient anatomic structures and beam geometries and can be used for verification of electron beam dose algorithms are performed.
Abstract: The Collaborative Working Group (CWG) of the National Cancer Institute (NCI) electron beam treatment planning contract has performed a set of 14 experiments that measured dose distributions for 28 unique beam-phantom configurations that simulated various patient anatomic structures and beam geometries. Multiple dose distributions were measured with film or diode detectors for each configuration, resulting in 78, 2-D planar dose distributions and one, 1-D depth-dose distribution. Measurements were made for 9- and 20-MeV electron beams, using primarily 6{times}6- and 15{times}15-cm applicators at several SSDs. Dose distributions were measured for shaped fields, irregular surfaces, and inhomogeneities (1-D, 2-D, and 3-D), which were designed to simulate many clinical electron treatments. The data were corrected for asymmetries, and normalized in an absolute manner. This set of measured data can be used for verification of electron beam dose algorithms and is available to others for that purpose.

99 citations

Journal ArticleDOI
TL;DR: Results demonstrate the algorithm's ability to simultaneously account for the isodose shifting as a result of internal heterogeneities and for sidescatter non-equilibrium caused by lateral discontinuities of the skin surface and internal anatomy.
Abstract: The accuracy of a pencil-beam algorithm for electrons employing a two-dimensional heterogeneity correction is demonstrated by comparing calculation with measurement. Ionization measurements have been made in a water phantom for a variety of non-standard geometries. Geometries to demonstrate the effect of an extended treatment distance, a sloping skin surface, and an irregular skin surface have been selected. Additionally, thermoluminescent dosimeters have been used to measure distributions in tissue-substitute phantoms, which were designed from individual patient computerized tomographic scans. Three patient scans have been selected: (1) diffuse hystiocytic lymphoma of the left buccal mucosa and retromolar trigone; (2) squamous cell carcinoma of the nose at the columnella ; and (3) carcinoma of the maxillary antrum. Results demonstrate the algorithm's ability to simultaneously account for the isodose shifting as a result of internal heterogeneities and for sidescatter non-equilibrium caused by lateral discontinuities of the skin surface and internal anatomy. The algorithm is shown to generally be accurate to within +/- 4% in the treatment volume or +/- 4 mm in regions of sharp dose gradients as found in the penumbra and distal edge of the beam. Examples of greater disagreement are shown and their physical interpretation discussed.

83 citations

Journal ArticleDOI
TL;DR: The authors report on the nature of this 3D implementation and assess the magnitude of discrepancies between calculation and measurement for 10 MeV and 18 MeV electron beams, and for the variety of phantom compositions and geometries identified above.
Abstract: Verification of electron beam treatment-planning algorithms in the presence of heterogeneities can be very difficult. Using controlled geometries to minimise physical uncertainties in geometric alignment and composition, a large number of measurements were made to test the performance of a 2D and 3D electron pencil beam algorithm. A Therados RFA-3 beam-scanning system interfaced to a microcomputer was used to measure the dose distributions. The geometric arrangement consisted of single and double rods 1 cm in diameter situated just below the surface of a unit density phantom. The electron densities (relative to water) of the rods ranged from 2.12 (aluminium) to 1.29 (soft bone analogue), and their length could be varied between 1 cm and 10 cm. Measured isodose distributions beyond the inhomogeneities were compared with those predicted theoretically. Calculations were performed on a VAX-11/780 using 2D and 3D implementations of the Hogstrom electron pencil beam algorithm. The authors report on the nature of this 3D implementation and assess the magnitude of discrepancies between calculation and measurement for 10 MeV and 18 MeV electron beams, and for the variety of phantom compositions and geometries identified above.

61 citations