TL;DR: In this article, the authors report the three-dimensional structure of the Local Bubble using two different Diffuse Interstellar Bands (DIB) tracers and reveal that DIB carriers are present within the Bubble.
Abstract: The Solar System is located within a low-density cavity, known as the Local Bubble, which appears to be filled with an X-ray emitting gas at a temperature of 10$^6$ K. Such conditions are too harsh for typical interstellar atoms and molecules to survive. There exists an enigmatic tracer of interstellar gas, known as Diffuse Interstellar Bands (DIB), which often appears as absorption features in stellar spectra. The carriers of these bands remain largely unidentified. Here we report the three-dimensional structure of the Local Bubble using two different DIB tracers ($\lambda$5780 and $\lambda$5797), which reveals that DIB carriers are present within the Bubble. The map shows low ratios of $\lambda$5797/$\lambda$5780 inside the Bubble compared to the outside. This finding proves that the carrier of the $\lambda$5780 DIB can withstand X-ray photo-dissociation and sputtering by fast ions, where the carrier of the $\lambda$5797 DIB succumbs. This would mean that DIB carriers can be more stable than hitherto thought and that the carrier of the $\lambda$5780 DIB must be larger than that of the $\lambda$5797 DIB. Alternatively, small-scale denser (and cooler) structures that shield some of the DIB carriers must be prevalent within the Bubble, implying that such structures may be an intrinsic feature of supernova-driven bubbles.
A three-dimensional map of the hot Local Bubble using
Such conditions are too harsh for typical interstellar atoms and molecules to survive2, 3.
In the 2nd quadrant (upper-left sector) DIB carriers are abundant in the direction of the Taurus dark clouds and molecular.
H. Gh. Khosroshahi - Present address: Institude in research in fundamental science, Tehran, Iran.
Methods
To map DIB absorption in and around the LB, the authors conducted a high signal-to-noise (S/N) survey of 637 nearby early-type stars in both hemispheres (see Supplementary Fig. 4).
This error was estimated based on fitting three different continuum lines in ±2 Å range around the peak (linear fit, quadratic fit, and simultaneous fit to the DIB and a linear continuum33).
All distances to the target stars are measured from parallaxes from the second Gaia data re- lease (GDR2)34, 35.
The lack of constraints as a result of empty voxels renders the inversion method unable to accurately determine the shape of the clouds especially at the cloud edges (See Supplementary Fig. 6).
Λ5780 DIB vertical slices, also known as Supplementary Figure 2.
TL;DR: In this paper, the structure of the Galactic magnetic field on the Local Bubble (LB) scale was derived from 3D dust extinction maps of the local interstellar medium (ISM) and applied to the Planck 353 GHz dust polarized emission maps over the Galactic polar caps.
Abstract: The Sun is embedded in the so-called Local Bubble (LB)-a cavity of hot plasma created by supernova explosions and surrounded by a shell of cold, dusty gas. Knowing the local distortion of the Galactic magnetic field associated with the LB is critical for the modeling of interstellar polarization data at high Galactic latitudes. In this his paper, we relate the structure of the Galactic magnetic field on the LB scale to three-dimensional (3D) maps of the local interstellar medium (ISM). First, we extracted the geometry of the LB shell, its inner surface, in particular from 3D dust extinction maps of the local ISM. We expanded the shell inner surface in spherical harmonics, up to a variable maximum multipole degree, which enabled us to control the level of complexity for the modeled surface. Next, we applied an analytical model for the ordered magnetic field in the shell to the modeled shell surface. This magnetic field model was successfully fitted to the Planck 353 GHz dust polarized emission maps over the Galactic polar caps. For each polar cap, the direction of the mean magnetic field derived from dust polarization (together with the prior that the field points toward longitude 90 • ± 90 •) is found to be consistent with the Faraday spectra of the nearby diffuse synchrotron emission. Our work presents a new approach to modeling the local structure of the Galactic magnetic field. We expect our methodology and our results to be useful both in modeling the local ISM as traced by its different components and in modeling the dust polarized emission, which is a long-awaited input for studies of the polarized foregrounds for cosmic microwave background.
TL;DR: In this article, the interrelation between five diffuse interstellar bands (DIBs) was investigated for high-resolution spectra with high signal-to-noise ratio (S/N) of 54 hot O -- B stars with reddening 0.12 -1.45 mag were used.
Abstract: Considered here is the interrelation between five diffuse interstellar bands (DIBs): $\lambda\lambda$ 5545, 6113, 6196, 6445 and 6614 A. Two DIBs ($\lambda$ 6196 and $\lambda$ 6614 A) have already been known as well correlated with each other; their relation with three other, weaker bands, was investigated for the first time. To accomplish this task high-resolution spectra ($\lambda/\Delta\lambda$ $\approx$ 100,000) with high signal-to-noise ratio (S/N) of 54 hot O -- B stars with reddening 0.12 -- 1.45 mag were used. Analysis of measured equivalent widths has allowed to establish linear dependencies and evaluate linear correlation coefficients as high as 0.968 -- 0.988 between the intensities of these five DIBs. Such a degree of correlation may indicate their common origin. Several spacings in wavenumbers found between these DIBs correspond to the energies of vibrational transitions in some PAHs resulting in IR emissions at $\lambda\lambda$ 16.4, 11.3, 7.7, 6.2 and 3.3 $\mu$m.
TL;DR: In this paper, the authors studied the correlations between the equivalent widths of four diffuse interstellar bands and properties of the target stars (colour excess values, distances and Galactic coordinates) and their maps were produced and further analysed.
Abstract: With the use of the data from archives, we studied the correlations between the equivalent widths of four diffuse interstellar bands (4430$A$, 5780$A$, 5797$A$, 6284$A$) and properties of the target stars (colour excess values, distances and Galactic coordinates). Many different plots of the diffuse interstellar bands and their maps were produced and further analysed. There appears to be a structure in the plot of equivalent widths of 5780$A$ DIB (and 6284$A$ DIB) against the Galactic $x$-coordinate. The structure is well defined below $\sim150$ m$A$ and within $|x|<250$ pc, peaking around $x=170$ pc. We argue that the origin of this structure is not a statistical fluctuation. Splitting the data in the Galactic longitude into several subregions improves or lowers the well known linear relation between the equivalent widths and the colour excess, which was expected. However, some of the lines of sight display drastically different behaviour. The region within $150^\circ
3 citations
Cites result from "A three-dimensional map of the hot ..."
...6 the comparison with the data from Bailey et al. (2016) and the recent work by Farhang et al. (2019) who studied mostly objects within 200 pc. Data from this work complete our picture of the map within 100 pc radius area where data from Table 1 is lacking in the number of observations....
[...]
...Finally, it is possible to compare our results from the wide-minimum region with the data from Bailey et al. (2016) and Farhang et al. (2019) which show basically the same result....
TL;DR: The Iran National Observatory (INO) project is approaching completion, with the first light of the flagship 3.4m optical telescope, INO340, planned for 2022 as mentioned in this paper .
Abstract: Iranian National Observatory (INO) project is approaching completion, with the first light of the flagship 3.4m optical telescope, INO340, planned for 2022. The observatory is located in central Iran on Mt Gargash at 3600m, benefiting from an excellent atmospheric seeing and suitable weather conditions. The observatory comprises the 3.4m optical telescope, the enclosure and auxiliaries, a service building hosting a control room, offices and mirror coating hall, a lens array system for wide-field monitoring, and a site monitoring station equipped with a weather station and an automatic seeing monitor, and essential utilities. The Alt-Az telescope benefits from hydrostatic bearing in the Azimuth, an active optics system to support and deform the primary mirror and a hexapod to position the secondary mirror. This report will provide an overview of the project development, manufacturing and installing the telescope and its enclosure.
TL;DR: The second Gaia data release, Gaia DR2 as mentioned in this paper, is a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products.
Abstract: Context. We present the second Gaia data release, Gaia DR2, consisting of astrometry, photometry, radial velocities, and information on astrophysical parameters and variability, for sources brighter than magnitude 21. In addition epoch astrometry and photometry are provided for a modest sample of minor planets in the solar system. Aims: A summary of the contents of Gaia DR2 is presented, accompanied by a discussion on the differences with respect to Gaia DR1 and an overview of the main limitations which are still present in the survey. Recommendations are made on the responsible use of Gaia DR2 results. Methods: The raw data collected with the Gaia instruments during the first 22 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into this second data release, which represents a major advance with respect to Gaia DR1 in terms of completeness, performance, and richness of the data products. Results: Gaia DR2 contains celestial positions and the apparent brightness in G for approximately 1.7 billion sources. For 1.3 billion of those sources, parallaxes and proper motions are in addition available. The sample of sources for which variability information is provided is expanded to 0.5 million stars. This data release contains four new elements: broad-band colour information in the form of the apparent brightness in the GBP (330-680 nm) and GRP (630-1050 nm) bands is available for 1.4 billion sources; median radial velocities for some 7 million sources are presented; for between 77 and 161 million sources estimates are provided of the stellar effective temperature, extinction, reddening, and radius and luminosity; and for a pre-selected list of 14 000 minor planets in the solar system epoch astrometry and photometry are presented. Finally, Gaia DR2 also represents a new materialisation of the celestial reference frame in the optical, the Gaia-CRF2, which is the first optical reference frame based solely on extragalactic sources. There are notable changes in the photometric system and the catalogue source list with respect to Gaia DR1, and we stress the need to consider the two data releases as independent. Conclusions: Gaia DR2 represents a major achievement for the Gaia mission, delivering on the long standing promise to provide parallaxes and proper motions for over 1 billion stars, and representing a first step in the availability of complementary radial velocity and source astrophysical information for a sample of stars in the Gaia survey which covers a very substantial fraction of the volume of our galaxy.
TL;DR: In this article, a weak distance prior is used to estimate the distances to all 1.33 billion stars with parallaxes published in the second Gaia data release, and the uncertainty in the distance estimate is characterized by the lower and upper bounds of an asymmetric confidence interval.
Abstract: For the vast majority of stars in the second Gaia data release, reliable distances cannot be obtained by inverting the parallax. A correct inference procedure must instead be used to account for the nonlinearity of the transformation and the asymmetry of the resulting probability distribution. Here, we infer distances to essentially all 1.33 billion stars with parallaxes published in the second Gaia data release. This is done using a weak distance prior that varies smoothly as a function of Galactic longitude and latitude according to a Galaxy model. The irreducible uncertainty in the distance estimate is characterized by the lower and upper bounds of an asymmetric confidence interval. Although more precise distances can be estimated for a subset of the stars using additional data (such as photometry), our goal is to provide purely geometric distance estimates, independent of assumptions about the physical properties of, or interstellar extinction toward, individual stars. We analyze the characteristics of the catalog and validate it using clusters. The catalog can be queried using ADQL at http://gaia.ari.uni-heidelberg.de/tap.html (which also hosts the Gaia catalog) and downloaded from http://www.mpia.de/~calj/gdr2_distances.html.
TL;DR: In this article, a general definition of the nonlinear least squares inverse problem is given, where the form of the theoretical relationship between data and unknowns may be general (in particular, nonlinear integrodierentia l equations).
Abstract: We attempt to give a general definition of the nonlinear least squares inverse problem. First, we examine the discrete problem (finite number of data and unknowns), setting the problem in its fully nonlinear form. Second, we examine the general case where some data and/or unknowns may be functions of a continuous variable and where the form of the theoretical relationship between data and unknowns may be general (in particular, nonlinear integrodierentia l equations). As particular cases of our nonlinear algorithm we find linear solutions well known in geophysics, like Jackson’s (1979) solution for discrete problems or Backus and Gilbert’s (1970) a solution for continuous problems.
TL;DR: In this paper, the authors used a weak distance prior that varies smoothly as a function of Galactic longitude and latitude according to a Galaxy model to infer distances to essentially all 1.33 billion stars with parallaxes published in the second Gaia data release.
Abstract: For the vast majority of stars in the second Gaia data release, reliable distances cannot be obtained by inverting the parallax. A correct inference procedure must instead be used to account for the nonlinearity of the transformation and the asymmetry of the resulting probability distribution. Here we infer distances to essentially all 1.33 billion stars with parallaxes published in the second \gaia\ data release. This is done using a weak distance prior that varies smoothly as a function of Galactic longitude and latitude according to a Galaxy model. The irreducible uncertainty in the distance estimate is characterized by the lower and upper bounds of an asymmetric confidence interval. Although more precise distances can be estimated for a subset of the stars using additional data (such as photometry), our goal is to provide purely geometric distance estimates, independent of assumptions about the physical properties of, or interstellar extinction towards, individual stars. We analyse the characteristics of the catalogue and validate it using clusters. The catalogue can be queried on the Gaia archive using ADQL at this http URL and downloaded from this http URL .
1,715 citations
"A three-dimensional map of the hot ..." refers methods in this paper
...Therefore we used the catalog of Bailer-Jones et al. (2018)36 who provide purely geometric distance estimates for GDR2 sources....
TL;DR: In this article, the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD) was highlighted, depending in particular on stellar population selections.
Abstract: We highlight the power of the Gaia DR2 in studying many fine structures of the Hertzsprung-Russell diagram (HRD). Gaia allows us to present many different HRDs, depending in particular on stellar population selections. We do not aim here for completeness in terms of types of stars or stellar evolutionary aspects. Instead, we have chosen several illustrative examples. We describe some of the selections that can be made in Gaia DR2 to highlight the main structures of the Gaia HRDs. We select both field and cluster (open and globular) stars, compare the observations with previous classifications and with stellar evolutionary tracks, and we present variations of the Gaia HRD with age, metallicity, and kinematics. Late stages of stellar evolution such as hot subdwarfs, post-AGB stars, planetary nebulae, and white dwarfs are also analysed, as well as low-mass brown dwarf objects. The Gaia HRDs are unprecedented in both precision and coverage of the various Milky Way stellar populations and stellar evolutionary phases. Many fine structures of the HRDs are presented. The clear split of the white dwarf sequence into hydrogen and helium white dwarfs is presented for the first time in an HRD. The relation between kinematics and the HRD is nicely illustrated. Two different populations in a classical kinematic selection of the halo are unambiguously identified in the HRD. Membership and mean parameters for a selected list of open clusters are provided. They allow drawing very detailed cluster sequences, highlighting fine structures, and providing extremely precise empirical isochrones that will lead to more insight in stellar physics. Gaia DR2 demonstrates the potential of combining precise astrometry and photometry for large samples for studies in stellar evolution and stellar population and opens an entire new area for HRD-based studies.