scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A three-phase soft-switched high power density DC/DC converter for high power applications

02 Oct 1988-Vol. 27, Iss: 1, pp 63-73
TL;DR: In this paper, three DC/DC converter topologies suitable for high power-density high power applications are presented, which operate in a soft-switched manner, making possible a reduction in device switching losses and an increase in switching frequency.
Abstract: Three DC/DC converter topologies suitable for high-power-density high-power applications are presented. All three circuits operate in a soft-switched manner, making possible a reduction in device switching losses and an increase in switching frequency. The three-phase dual-bridge converter proposed is shown to have the most favorable characteristics. This converter consists of two three-phase inverter stages operating in a high-frequency six-step mode. In contrast to existing single-phase AC-link DC/DC converters, lower turn-off peak currents in the power devices and lower RMS current ratings for both the input and output filter capacitors are obtained. This is in addition to smaller filter element values due to the higher-frequency content of the input and output waveforms. Furthermore, the use of a three-phase symmetrical transformer instead of single-phase transformers and a better utilization of the available apparent power of the transformer (as a consequence of the controlled output inverter) significantly increase the power density attainable. >
Citations
More filters
Journal ArticleDOI
07 Oct 1990
TL;DR: In this article, the performance of a high-power, high-density DC-to-DC converter based on the single-phase dual active bridge (DAB) topology is described.
Abstract: The performance of a high-power, high-power-density DC-to-DC converter based on the single-phase dual active bridge (DAB) topology is described. The dual active bridge converter has been shown to have very attractive features in terms of low device and component stresses, small filter components, low switching losses, high power density and high efficiency, bidirectional power flow, buck-boost operation, and low sensitivity to system parasitics. For high output voltages, on the order of kilovolts, a cascaded output structure is considered. The effects of snubber capacitance and magnetizing inductance on the soft switching region of control are discussed. Various control schemes are outlined. Coaxial transformer design techniques have been utilized to carefully control leakage inductance. The layout and experimental performance of a prototype 50 kW 50 kHz unit operating with an input voltage of 200 V DC and an output voltage of 1600 V DC are presented. >

1,311 citations

Journal ArticleDOI
TL;DR: In this paper, the dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit of high frequency-link (HFL) power conversion systems.
Abstract: High-frequency-link (HFL) power conversion systems (PCSs) are attracting more and more attentions in academia and industry for high power density, reduced weight, and low noise without compromising efficiency, cost, and reliability. In HFL PCSs, dual-active-bridge (DAB) isolated bidirectional dc-dc converter (IBDC) serves as the core circuit. This paper gives an overview of DAB-IBDC for HFL PCSs. First, the research necessity and development history are introduced. Second, the research subjects about basic characterization, control strategy, soft-switching solution and variant, as well as hardware design and optimization are reviewed and analyzed. On this basis, several typical application schemes of DAB-IBDC for HPL PCSs are presented in a worldwide scope. Finally, design recommendations and future trends are presented. As the core circuit of HFL PCSs, DAB-IBDC has wide prospects. The large-scale practical application of DAB-IBDC for HFL PCSs is expected with the recent advances in solid-state semiconductors, magnetic and capacitive materials, and microelectronic technologies.

1,306 citations

Journal ArticleDOI
TL;DR: In this article, an isolated three-port bidirectional dc-dc converter composed of three full-bridge cells and a high-frequency transformer is proposed, where phase shift control managing the power flow between the ports, utilization of the duty cycle control for optimizing the system behavior is discussed and the control laws ensuring the minimum overall system losses are studied.
Abstract: An isolated three-port bidirectional dc-dc converter composed of three full-bridge cells and a high-frequency transformer is proposed in this paper. Besides the phase shift control managing the power flow between the ports, utilization of the duty cycle control for optimizing the system behavior is discussed and the control laws ensuring the minimum overall system losses are studied. Furthermore, the dynamic analysis and associated control design are presented. A control-oriented converter model is developed and the Bode plots of the control-output transfer functions are given. A control strategy with the decoupled power flow management is implemented to obtain fast dynamic response. Finally, a 1.5 kW prototype has been built to verify all theoretical considerations. The proposed topology and control is particularly relevant to multiple voltage electrical systems in hybrid electric vehicles and renewable energy generation systems.

692 citations


Cites methods from "A three-phase soft-switched high po..."

  • ...Derived from the dual-active-bridge topology [22], a multiport converter employing a multi-winding transformer is proposed in [12] and [13], as shown in Fig....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a new zero-voltage-switching (ZVS) bidirectional dc-dc converter is proposed for medium and high power applications especially for auxiliary power supply in fuel cell vehicles and power generation where the high power density, low cost, lightweight and high reliability power converters are required.
Abstract: This paper presents a new zero-voltage-switching (ZVS) bidirectional dc-dc converter. Compared to the traditional full and half bridge bidirectional dc-dc converters for the similar applications, the new topology has the advantages of simple circuit topology with no total device rating (TDR) penalty, soft-switching implementation without additional devices, high efficiency and simple control. These advantages make the new converter promising for medium and high power applications especially for auxiliary power supply in fuel cell vehicles and power generation where the high power density, low cost, lightweight and high reliability power converters are required. The operating principle, theoretical analysis, and design guidelines are provided in this paper. The simulation and the experimental verifications are also presented.

684 citations


Cites background from "A three-phase soft-switched high po..."

  • ...Several full-bridge based topologies [1]–[ 4 ] have been published in the literature to reduce switching loss, improve EMI and increase efficiency....

    [...]

  • ...Fig. 3 shows the energy transfer principle [ 4 ]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a bidirectional dc-dc converter suitable for an energy storage system with an additional function of galvanic isolation is presented, where an electric double layer capacitor is directly connected to a dc side of the converter without any chopper circuit.
Abstract: This paper addresses a bidirectional dc-dc converter suitable for an energy storage system with an additional function of galvanic isolation. An energy storage device such as an electric double layer capacitor is directly connected to a dc side of the dc-dc converter without any chopper circuit. Nevertheless, the dc-dc converter can continue operating when the voltage across the energy storage device drops along with its discharge. Theoretical calculation and experimental measurement reveal that power loss and peak current impose limitations on a permissible dc-voltage range. This information may be useful in design of the dc-dc converter. Experimental results verify proper charging and discharging operation obtained from a 200-V, 2.6-kJ laboratory model of the energy storage system. Moreover, the dc-dc converter can charge the capacitor bank from zero to the rated voltage without any external precharging circuit.

675 citations


Cites background or methods from "A three-phase soft-switched high po..."

  • ...The IGBTs in bridge 1 are turned on in hard-switching manner if the dc voltage is lower than , and the following equation is satisfied [ 11 ]:...

    [...]

  • ...Fig. 4 illustrates simplified theoretical waveforms of the dc-dc converter where . The two single-phase voltage-source full-bridge converters produce square voltages and . The power transfer can simply be controlled by adjusting the phase shift between and , as expressed by [ 11 ]...

    [...]

  • ...A bidirectional converter has been discussed to exchange electric power between a fuel cell, a battery, and a load [15], based on a three-port extension of the circuit presented in [ 11 ]....

    [...]

  • ...It suffered from a low efficiency because the first-generation IGBTs were used as switching power devices at that time [ 11 ]....

    [...]

  • ...Fig. 2 depicts a bidirectional isolated dc-dc converter presented in 1991 [ 11 ], [12]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, two topologies for realizing zero switching losses in high-power converters are proposed: the actively clamped resonant pole inverter (RPI) and the quasi-resonant current mode inverter.
Abstract: The development of zero switching loss inverters has attracted much interest for industrial applications. Two topologies for realizing zero switching losses in high-power converters are proposed. The actively clamped resonant DC link inverter uses the concept of a lossless active clamp to restrict voltage stresses to only 1.3-1.5 supply voltage. For applications demanding substantially better spectral performance, the resonant pole inverter (RPI), also called the quasi-resonant current mode inverter, is proposed as a viable topology. Using only six devices rated at supply voltage, this circuit transfers the resonant components to the AC side of each phase and thus requires additional inductor and capacitor (LC) components. On the other hand, the RPI is capable of true pulsewidth modulation (PWM) operation at high frequency as opposed to discrete pulse modulation operation found in resonant DC link invertors. >

543 citations

Journal ArticleDOI
TL;DR: In this paper, a novel resonant switch operating under the principle of zero-voltage switching is presented, and the circuit's operating principles are described using a voltage-mode quasi-resonant boost converter.
Abstract: A novel resonant switch operating under the principle of zero-voltage switching is presented. The basic configurations of the voltage-mode resonant switches are presented. The circuit's operating principles are described using a voltage-mode quasi-resonant boost converter. DC analysis of the converter is carried out. A new family of voltage-mode quasi-resonant converters are derived, and several members of this family are presented. The duality relationship between the zero-current switching technique and the zero-voltage switching technique is derived. These two techniques are compared using an example showing the duality between a current-mode quasi-resonant Buck converter and a voltage-mode quasi-resonant boost converter. The similarities and differences of the voltage-mode quasi-resonant converters and the Class-E converters are discussed. A 5 MHz 50 V to 5 V flyback converter employing the zero-voltage switching technique has been implemented. Design considerations and experimental results of this circuit are presented. >

440 citations


"A three-phase soft-switched high po..." refers background in this paper

  • ...Most of the soft switching converters reported in literature attempt to tackle one or more of the problems listed above, typically at the expense of substantially higher component stresses [4] [5]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a low-power breadboard operating at 200-300 kHz has been built for switching power supplies and battery chargers, which can operate in either the step-up or step-down mode.
Abstract: Transistor dc-dc converters which employ a resonant circuit are described. A resonant circuit is driven with square waves of current or voltage, and by adjusting the frequency around the resonant point, the voltage on the resonant components can be adjusted to any practical voltage level. By rectifying the voltage across the resonant elements, a dc voltage is obtained which can be either higher or lower than the input dc voltage to the converter. Thus, the converter can operate in either the step-up or step-down mode. In addition, the switching losses in the inverter devices and rectifiers are extremely low due to the sine waves that occur from the use of a resonant circuit (as opposed to square waves in a conventional converter); also, easier EMI filtering should result. In the voltage input version, the converter is able to use the parasitic diode associated with an FET or monolithic Darlington, while in the current input version, the converter needs the inverse blocking capability which can be obtained with an IGT or GTO device. A low-power breadboard operating at 200-300 kHz has been built. Two typical application areas are switching power supplies and battery chargers. The converter circuits offer improvements over conventional circuits due to their high efficiency (low switching losses), small reactive components (high-frequency operation), and their step-up/stepdown ability.

371 citations


"A three-phase soft-switched high po..." refers background in this paper

  • ...Examples of soft switched dcldc converters are the parallel output SRC operated above resonance [9], the resonant pole, the pseudoresonant converter [2,3] and all quasi-resonant converters [4,5]....

    [...]

Journal ArticleDOI
11 Apr 1988
TL;DR: In this paper, a novel multiresonant switch concept is proposed to overcome the parasitic oscillations caused by the junction capacitance of the rectifying diode, which results in favorable switching conditions for all devices.
Abstract: The power transistor in zero-current-switched quasiresonant converters (ZCS-QRCs) suffers from excessive voltage stress, and the converter regulation characteristics and stability are adversely affected by parasitic oscillations caused by the junction capacitance of the rectifying diode. A novel, multiresonant switch concept is proposed to overcome these problems. A unique multiresonant network arrangement results in absorption of all parasitic components, including transistor output capacitance, diode junction capacitance, and transformer leakage inductance, in the resonant circuit. This results in favorable switching conditions for all devices. Experimental results show that ZVS multiresonant converters are superior to ZVS-QRCs due to reduced transistor voltage stress and improved load range and stability. >

344 citations


"A three-phase soft-switched high po..." refers background in this paper

  • ...Most of the soft switching converters reported in literature attempt to tackle one or more of the problems listed above, typically at the expense of substantially higher component stresses [4] [5]....

    [...]

Proceedings ArticleDOI
24 Jun 1985
TL;DR: In this article, the concept of resonant switch was proposed to overcome the obstacles of higher switching stresses and switching losses in conventional switching converters, by incorporating additional Land C elements to shape device current and voltage waveforms, the desired zero-current switching property can be realized.
Abstract: In designing conventional switching converters, the effort to increase operating frequency in order to reduce weight, size and cost of magnetic and filter elements is constantly hampered by higher switching stresses and switching losses. To overcome these obstacles, the concept of resonant switch was proposed. By incorporating additional Land C elements to shape device current and voltage waveforms, the desired zero-current switching property can be realized which enables converters to operate in the megahertz range.

287 citations