scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Toolbox for Lithium–Sulfur Battery Research: Methods and Protocols

01 Jul 2017-Vol. 1, Iss: 7, pp 1700134
TL;DR: In this paper, the authors provide a comprehensive toolbox for Li-S-battery research and spur future development in multi-electron chemistry, multiphase conversion, and related energy storage systems and fields.
Abstract: Favorable characteristics, such as high energy density, cost efficiency, and environmental benignity, render lithium–sulfur (Li–S) batteries a promising candidate to meet the increasing demand for efficient and economic energy-storage systems. Many efforts have been devoted to and much progress has been achieved in Li–S-battery research from both the scientific and technological viewpoints. Various tools, methods, and protocols have been developed for Li–S-battery research. Here, these advancements are summarized, from spectroscopic to electrochemical techniques, and the landscape of Li–S chemistry is painted from reactions to transport phenomena. The aim is to provide a comprehensive toolbox for Li–S-battery research and spur future development in multi-electron chemistry, multiphase conversion, and related energy-storage systems and fields.
Citations
More filters
01 Apr 2014
TL;DR: In this article, a mesoporous nitrogen-doped carbon (MPNC)-sulfur nanocomposite is reported as a novel cathode for advanced Li-S batteries.
Abstract: As one important component of sulfur cathodes, the carbon host plays a key role in the electrochemical performance of lithium-sulfur (Li-S) batteries. In this paper, a mesoporous nitrogen-doped carbon (MPNC)-sulfur nanocomposite is reported as a novel cathode for advanced Li-S batteries. The nitrogen doping in the MPNC material can effectively promote chemical adsorption between sulfur atoms and oxygen functional groups on the carbon, as verifi ed by X-ray absorption near edge structure spectroscopy, and the mechanism by which nitrogen enables the behavior is further revealed by density functional theory calculations. Based on the advantages of the porous structure and nitrogen doping, the MPNC-sulfur cathodes show excellent cycling stability (95% retention within 100 cycles) at a high current density of 0.7 mAh cm −2 with a high sulfur loading (4.2 mg S cm −2 ) and a sulfur content (70 wt%). A high areal capacity (≈3.3 mAh cm −2 ) is demonstrated by using the novel cathode, which is crucial for the practical application of Li-S batteries. It is believed that the important role of nitrogen doping promoted chemical adsorption can be extended for development of other high performance carbon-sulfur composite cathodes for Li-S batteries.

826 citations

Journal ArticleDOI
TL;DR: This review has summarized the recent progress of flexible Li-S and analogous batteries, and emphasized the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-typeLi-S batteries are highlighted.
Abstract: Flexible energy storage systems are imperative for emerging flexible devices that are revolutionizing our life. Lithium-ion batteries, the current main power sources, are gradually approaching their theoretical limitation in terms of energy density. Therefore, alternative battery chemistries are urgently required for next-generation flexible power sources with high energy densities, low cost, and inherent safety. Flexible lithium–sulfur (Li–S) batteries and analogous flexible alkali metal–chalcogen batteries are of paramount interest owing to their high energy densities endowed by multielectron chemistry. In this review, we summarized the recent progress of flexible Li–S and analogous batteries. A brief introduction to flexible energy storage systems and general Li–S batteries has been provided first. Progress in flexible materials for flexible Li–S batteries are reviewed subsequently, with a detailed classification of flexible sulfur cathodes as those based on carbonaceous (e.g., carbon nanotubes, graphene, and carbonized polymers) and composite (polymers and inorganics) materials and an overview of flexible lithium anodes and flexible solid-state electrolytes. Advancements in other flexible alkali metal–chalcogen batteries are then introduced. In the next part, we emphasize the importance of cell packaging and flexibility evaluation, and two special flexible battery prototypes of foldable and cable-type Li–S batteries are highlighted. In the end, existing challenges and future development of flexible Li–S and analogous alkali metal–chalcogen batteries are summarized and prospected.

525 citations

Journal ArticleDOI
TL;DR: The key roles of polysulfides are discussed, with regard to their status, behavior, and their corresponding impact on the lithium-sulfur system.
Abstract: Intermediate polysulfides (Sn , where n = 2-8) play a critical role in both mechanistic understanding and performance improvement of lithium-sulfur batteries. The rational management of polysulfides is of profound significance for high-efficiency sulfur electrochemistry. Here, the key roles of polysulfides are discussed, with regard to their status, behavior, and their correspondingimpact on the lithium-sulfur system. Two schools of thoughts for polysulfide management are proposed, their advantages and disadvantages are compared, and future developments are discussed.

447 citations

Journal ArticleDOI
TL;DR: In this article, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li-S batteries is addressed, and challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution-precipitation conversion and the solid-solid multi-phasic transition.
Abstract: The development of energy-storage devices has received increasing attention as a transformative technology to realize a low-carbon economy and sustainable energy supply. Lithium-sulfur (Li-S) batteries are considered to be one of the most promising next-generation energy-storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li-S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid-liquid-solid multi-phase conversion, the electrolyte amount plays a primary role in the practical performances of Li-S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li-S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high-sulfur-loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li-S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution-precipitation conversion and the solid-solid multi-phasic transition. Finally, prospects of future lean-electrolyte Li-S battery design and engineering are discussed.

395 citations

References
More filters
Journal ArticleDOI
06 Feb 2008-Nature
TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Abstract: Researchers must find a sustainable way of providing the power our modern lifestyles demand.

15,980 citations

Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Abstract: The Li-S battery has been under intense scrutiny for over two decades, as it offers the possibility of high gravimetric capacities and theoretical energy densities ranging up to a factor of five beyond conventional Li-ion systems. Herein, we report the feasibility to approach such capacities by creating highly ordered interwoven composites. The conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur. The structure provides access to Li+ ingress/egress for reactivity with the sulphur, and we speculate that the kinetic inhibition to diffusion within the framework and the sorption properties of the carbon aid in trapping the polysulphides formed during redox. Polymer modification of the carbon surface further provides a chemical gradient that retards diffusion of these large anions out of the electrode, thus facilitating more complete reaction. Reversible capacities up to 1,320 mA h g(-1) are attained. The assembly process is simple and broadly applicable, conceptually providing new opportunities for materials scientists for tailored design that can be extended to many different electrode materials.

5,151 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the present status of lithium battery technology, then focus on its near future development and finally examine important new directions aimed at achieving quantum jumps in energy and power content.

4,363 citations