scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A Tumor-Penetrating Nanomedicine Improves the Chemoimmunotherapy of Pancreatic Cancer.

18 Jun 2021-Small (John Wiley & Sons, Ltd)-Vol. 17, Iss: 29, pp 2101208
TL;DR: In this paper, a pH-sensitive polymer is synthesized by conjugating N,N-dipentylethyl moieties and monomethoxylpoly(ethylene glycol) onto PAMAM dendrimer, into whose cavity a hydrophobic gemcitabine (Gem) prodrug is accommodated.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors with a low survival rate. The therapeutic effect of chemotherapy and immunotherapy for PDAC is disappointing due to the presence of dense tumor stroma and immunosuppressive cells in the tumor microenvironment (TME). Herein, a tumor-penetrating nanoparticle is reported to modulate the deep microenvironment of PDAC for improved chemoimmunotherapy. The tumor pH-sensitive polymer is synthesized by conjugating N,N-dipentylethyl moieties and monomethoxylpoly(ethylene glycol) onto PAMAM dendrimer, into whose cavity a hydrophobic gemcitabine (Gem) prodrug is accommodated. They self-assemble into nanoparticles (denoted as SPN@Pro-Gem) with the size around 120 nm at neutral pH, but switch into small particles (≈8 nm) at tumor site to facilitate deep delivery of Gem into the tumor parenchyma. In addition to killing cancer cells that resided deeply in the tumor tissue, SPN@Pro-Gem could modulate the TME by reducing the abundance of tumor-associated macrophages and myeloid-derived suppressor cells as well as upregulating the expression level of PD-L1 of tumor cells. This collectively facilitates the infiltration of cytotoxic T cells into the tumors and renders checkpoint inhibitors more effective in previously unresponsive PDAC models. This study reveals a promising strategy for improving the chemoimmunotherapy of pancreatic cancer.
Citations
More filters
Journal ArticleDOI
TL;DR: This review discusses and critically analyzes the novel nanoscale strategies that have been used for drug delivery and immunomodulation to improve treatment efficacy, including newly emerging immunotherapy-based approaches for pancreatic cancer.
Abstract: Pancreatic tumors are highly desmoplastic and immunosuppressive. Delivery and distribution of drugs within pancreatic tumors are compromised due to intrinsic physical and biochemical stresses that lead to increased interstitial fluid pressure, vascular compression, and hypoxia. Immunotherapy-based approaches, including therapeutic vaccines, immune checkpoint inhibition, CAR-T cell therapy, and adoptive T cell therapies, are challenged by an immunosuppressive tumor microenvironment. Together, extensive fibrosis and immunosuppression present major challenges to developing treatments for pancreatic cancer. In this context, nanoparticles have been extensively studied as delivery platforms and adjuvants for cancer and other disease therapies. Recent advances in nanotechnology have led to the development of multiple nanocarrier-based formulations that not only improve drug delivery but also enhance immunotherapy-based approaches for pancreatic cancer. This review discusses and critically analyzes the novel nanoscale strategies that have been used for drug delivery and immunomodulation to improve treatment efficacy, including newly emerging immunotherapy-based approaches. This review also presents important perspectives on future research directions that will guide the rational design of novel and robust nanoscale platforms to treat pancreatic tumors, particularly with respect to targeted therapies and immunotherapies. These insights will inform the next generation of clinical treatments to help patients manage this debilitating disease and enhance survival rates.

25 citations

Journal ArticleDOI
TL;DR: The strategy of amplifying the neighboring effect of NPs through combination therapy may offer great potential in enhancing drug penetration and eradicating solid tumors.
Abstract: Nanoparticles (NPs)‐based cancer therapeutics are generally impeded by poor drug penetration into solid tumors due to their dense tumor extracellular matrix (ECM). Herein, pH/redox‐responsive dendritic polymer‐based NPs are developed to amplify the neighboring effect for improving drug penetration and driving cell apoptosis via combination therapy. Pyropheophorbide a (Ppa) is conjugated with PEGylated dendritic peptides via disulfide bonds and doxorubicin (DOX) encapsulated in the conjugate to construct dual‐responsive NPs, PDPP@D. Delayed released DOX and Ppa from PDPP@D exert their combination therapeutic effect to induce cell apoptosis, and then they are liberated out of dying cells to amplify the neighboring effect, resulting in their diffusion through the dense ECM and penetration into solid tumors. Transcriptome studies reveal that PDPP@D leads to irreversible stress on the endoplasmic reticulum and inhibits cell protection through blocking the IRE1‐dependent survival pathway and unleashing the DR5‐mediated caspase activity to promote cell death. The strategy of amplifying the neighboring effect of NPs through combination therapy may offer great potential in enhancing drug penetration and eradicating solid tumors.

20 citations

Journal ArticleDOI
TL;DR: In this article , an aptamerdecorated hypoxia-responsive nanoparticle s(DGL)n@Apt co-loading gemcitabine monophosphate and STAT3 inhibitor HJC0152 was designed and constructed.

17 citations

Journal ArticleDOI
17 Oct 2022-Small
TL;DR: A nanoparticle for effectively delivering RA is designed, which is a chemical complex of RA and fourth-generation poly-amidoamine-based amphiphilic polymer (G4-PAMAM), modified with l-serine due to the specific interaction between kidney injury molecule-1 (Kim-1) and serine, which generates a promising AKI kidney-targeting nanoparticle (S-G-R).
Abstract: Acute kidney injury (AKI) is a common clinical disease with high morbidity and mortality, and with a lack of effective drugs for treatment. Oxidative stress is very important in the occurrence and progression of AKI, and antioxidants use is one of the promising treatments. Rosmarinic acid (RA) is a ubiquitous natural polyphenol with powerful antioxidant and anti-inflammatory activities. Due to its inherent characteristic with poor water solubility and inferior bioavailability, its clinical application is impeded. Hence, the authors design a nanoparticle for effectively delivering RA, which is a chemical complex of RA and fourth-generation poly-amidoamine-based amphiphilic polymer (G4-PAMAM). The nanoparticle is modified with l-serine due to the specific interaction between kidney injury molecule-1 (Kim-1) and serine, which eventually generates a promising AKI kidney-targeting nanoparticle (S-G-R). The S-G-R is rapidly cumulated and long-term retained in ischemia-reperfusion-induced AKI kidneys, especially in the damaged renal tubular cells. The S-G-R exhibits more excellent antioxidative and antiapoptotic effects in vitro and has a more outstanding ability to improve the renal function, repair damaged renal tissue, and decrease oxidative stress, inflammatory response and apoptosis of tubular cells in vivo. Overall, this study might develop a safe and effective targeting strategy for the therapy of AKI.

3 citations

Journal ArticleDOI
TL;DR: In this paper , the authors developed a matrix metalloprotease 2 (MMP-2) responsive size-switchable nanoparticle (UAMSN@Gel-PEG) composed of ultrasmall amino-modified mesoporous silica nanoparticles wrapped within a PEG-conjugated gelatin to deliver H2 to the deep part of tumors.
Abstract: The poor penetration of nanocarriers within tumor dense extracellular matrices (ECM) greatly restricts the access of anticancer drugs to the deep tumor cells, resulting in low therapeutic efficacy. Moreover, the high toxicity of the traditional chemotherapeutics inevitably causes undesirable side effects. Herein, taking the advantages of biosafe H2 and small-sized nanoparticles in diffusion within tumor ECM, we develop a matrix metalloprotease 2 (MMP-2) responsive size-switchable nanoparticle (UAMSN@Gel-PEG) that is composed of ultrasmall amino-modified mesoporous silica nanoparticles (UAMSN) wrapped within a PEG-conjugated gelatin to deliver H2 to the deep part of tumors for effective gas therapy. Ammonia borane (AB) is chosen as the H2 prodrug that can be effectively loaded into UAMSN by hydrogen-bonding adsorption. Gelatin is used as the substrate of MMP-2 to trigger size change and block AB inside UAMSN during blood circulation. PEG is introduced to further increase the particle size and endow the nanoparticle with long blood circulation to achieve effective tumor accumulation via the EPR effect. After accumulation into the tumor site, MMP-2 promptly digests gelatin to expose UAMSN loading AB for deep tumor penetration. Upon stimulation by the acidic tumor microenvironment, AB decomposes into H2 for further intratumor diffusion to achieve effective hydrogen therapy. Consequently, such a simultaneous deep tumor penetration of nanocarriers and H2 results in an evident suppression on tumor growth in a 4T1 tumor-bearing model without any obvious toxicity on normal tissues. Our synthetic nanosystem provides a promising strategy for the development of nanomedicines with enhanced tumor permeability and good biosafety for efficient tumor treatment.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2014, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2015, were collected by the National Center for Health Statistics. In 2018, 1,735,350 new cancer cases and 609,640 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2005-2014) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2006-2015) declined by about 1.5% annually in both men and women. The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak. Of the 10 leading causes of death, only cancer declined from 2014 to 2015. In 2015, the cancer death rate was 14% higher in non-Hispanic blacks (NHBs) than non-Hispanic whites (NHWs) overall (death rate ratio [DRR], 1.14; 95% confidence interval [95% CI], 1.13-1.15), but the racial disparity was much larger for individuals aged <65 years (DRR, 1.31; 95% CI, 1.29-1.32) compared with those aged ≥65 years (DRR, 1.07; 95% CI, 1.06-1.09) and varied substantially by state. For example, the cancer death rate was lower in NHBs than NHWs in Massachusetts for all ages and in New York for individuals aged ≥65 years, whereas for those aged <65 years, it was 3 times higher in NHBs in the District of Columbia (DRR, 2.89; 95% CI, 2.16-3.91) and about 50% higher in Wisconsin (DRR, 1.78; 95% CI, 1.56-2.02), Kansas (DRR, 1.51; 95% CI, 1.25-1.81), Louisiana (DRR, 1.49; 95% CI, 1.38-1.60), Illinois (DRR, 1.48; 95% CI, 1.39-1.57), and California (DRR, 1.45; 95% CI, 1.38-1.54). Larger racial inequalities in young and middle-aged adults probably partly reflect less access to high-quality health care. CA Cancer J Clin 2018;68:7-30. © 2018 American Cancer Society.

14,011 citations

Journal ArticleDOI
TL;DR: Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
Abstract: Immune checkpoints refer to the plethora of inhibitory pathways that are crucial to maintaining self-tolerance. Tumour cells induce immune checkpoints to evade immunosurveillance. This Review discusses the progress in targeting immune checkpoints, the considerations for combinatorial therapy and the potential for additional immune-checkpoint targets.

10,602 citations

Journal ArticleDOI
TL;DR: It is demonstrated that gemcitabine is more effective than 5-FU in alleviation of some disease-related symptoms in patients with advanced, symptomatic pancreas cancer and confers a modest survival advantage over treatment with5-FU.
Abstract: PURPOSEMost patients with advanced pancreas cancer experience pain and must limit their daily activities because of tumor-related symptoms. To date, no treatment has had a significant impact on the disease. In early studies with gemcitabine, patients with pancreas cancer experienced an improvement in disease-related symptoms. Based on those findings, a definitive trial was performed to assess the effectiveness of gemcitabine in patients with newly diagnosed advanced pancreas cancer.PATIENTS AND METHODSOne hundred twenty-six patients with advanced symptomatic pancreas cancer completed a lead-in period to characterize and stabilize pain and were randomized to receive either gemcitabine 1,000 mg/m2 weekly x 7 followed by 1 week of rest, then weekly x 3 every 4 weeks thereafter (63 patients), or to fluorouracil (5-FU) 600 mg/m2 once weekly (63 patients). The primary efficacy measure was clinical benefit response, which was a composite of measurements of pain (analgesic consumption and pain intensity), Karnofs...

5,515 citations

Journal ArticleDOI
03 Apr 2015-Science
TL;DR: The way forward for this class of novel agents lies in the ability to understand human immune responses in the tumor microenvironment, which will provide valuable information regarding the dynamic nature of the immune response and regulation of additional pathways that will need to be targeted through combination therapies to provide survival benefit for greater numbers of patients.
Abstract: Immune checkpoint therapy, which targets regulatory pathways in T cells to enhance antitumor immune responses, has led to important clinical advances and provided a new weapon against cancer. This therapy has elicited durable clinical responses and, in a fraction of patients, long-term remissions where patients exhibit no clinical signs of cancer for many years. The way forward for this class of novel agents lies in our ability to understand human immune responses in the tumor microenvironment. This will provide valuable information regarding the dynamic nature of the immune response and regulation of additional pathways that will need to be targeted through combination therapies to provide survival benefit for greater numbers of patients.

3,499 citations

Journal ArticleDOI
TL;DR: It is shown that the penetration and efficacy of the larger micelles could be enhanced by using a transforming growth factor-β inhibitor to increase the permeability of the tumours.
Abstract: Drug-loaded polymeric micelles with a diameter of 30 nm can penetrate poorly permeable tumours to achieve an antitumour effect.

2,026 citations

Related Papers (5)