scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A unicorn in monoceros: the 3 M ⊙ dark companion to the bright, nearby red giant V723 Mon is a non-interacting, mass-gap black hole candidate

TL;DR: The closest known black hole candidate as a binary companion to V723 Mon was discovered in this paper, where the authors used the SED and the absence of continuum eclipses to identify a likely non-stellar, diffuse veiling component with contributions in the $B$ and $V$-band.
Abstract: We report the discovery of the closest known black hole candidate as a binary companion to V723 Mon. V723 Mon is a nearby ($d\sim460\,\rm pc$), bright ($V\simeq8.3$~mag), evolved ($T_{\rm eff, giant}\simeq4440$ K, $L_{\rm giant}\simeq173~L_\odot$ and $R_{\rm giant}\simeq22 ~R_\odot$) red giant in a high mass function, $f(M)=1.72\pm 0.01~M_\odot$, nearly circular binary ($P=59.9$ d, $e\simeq 0$). V723 Mon is a known variable star, previously classified as an eclipsing binary, but its ASAS, KELT, and TESS light curves are those of a nearly edge-on ellipsoidal variable. Detailed models of the light curves constrained by the period, radial velocities and stellar temperature give an inclination of $i=87.0^\circ \pm 1.0^\circ$, a mass ratio of $q\simeq0.30\pm0.02$, a companion mass of $M_{\rm comp}=2.91\pm0.08~M_\odot$, a stellar radius of $R_{\rm giant}=23.6\pm1.0~R_\odot$, and a giant mass of $M_{\rm giant}=0.87\pm0.08~ M_\odot$. We identify a likely non-stellar, diffuse veiling component with contributions in the $B$ and $V$-band of ${\sim}64\%$ and ${\sim}23\%$, respectively. The SED and the absence of continuum eclipses imply that the companion mass must be dominated by a compact object. We do observe eclipses of the Balmer lines when the dark companion passes behind the giant, but their velocity spreads are low compared to observed accretion disks. The X-ray luminosity of the system is $L_{\rm X}\simeq1.0\times10^{30}~\rm ergs~s^{-1}$, corresponding to $L/L_{\rm edd}{\sim}10^{-9}$.The simplest explanation for the massive companion is a single compact object, most likely a black hole in the "mass gap", although a double neutron star binary is possible.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present 39 candidate gravitational wave events from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15:00 UTC and 1 October 2019 15.00.
Abstract: We report on gravitational wave discoveries from compact binary coalescences detected by Advanced LIGO and Advanced Virgo in the first half of the third observing run (O3a) between 1 April 2019 15:00 UTC and 1 October 2019 15:00. By imposing a false-alarm-rate threshold of two per year in each of the four search pipelines that constitute our search, we present 39 candidate gravitational wave events. At this threshold, we expect a contamination fraction of less than 10%. Of these, 26 candidate events were reported previously in near real-time through GCN Notices and Circulars; 13 are reported here for the first time. The catalog contains events whose sources are black hole binary mergers up to a redshift of ~0.8, as well as events whose components could not be unambiguously identified as black holes or neutron stars. For the latter group, we are unable to determine the nature based on estimates of the component masses and spins from gravitational wave data alone. The range of candidate events which are unambiguously identified as binary black holes (both objects $\geq 3~M_\odot$) is increased compared to GWTC-1, with total masses from $\sim 14~M_\odot$ for GW190924_021846 to $\sim 150~M_\odot$ for GW190521. For the first time, this catalog includes binary systems with significantly asymmetric mass ratios, which had not been observed in data taken before April 2019. We also find that 11 of the 39 events detected since April 2019 have positive effective inspiral spins under our default prior (at 90% credibility), while none exhibit negative effective inspiral spin. Given the increased sensitivity of Advanced LIGO and Advanced Virgo, the detection of 39 candidate events in ~26 weeks of data (~1.5 per week) is consistent with GWTC-1.

768 citations

Journal ArticleDOI
TL;DR: The first unambiguous detection and mass measurement of an isolated stellar-mass black hole (BH) using any technique was reported by as discussed by the authors , who used the Hubble Space Telescope (HST) to carry out precise astrometry of the source star of the long-duration (t E ≃ 270 days) high-magnification microlensing event MOA-2011-BLG-191/OGLE-11-0462 in the direction of the Galactic bulge.
Abstract: We report the first unambiguous detection and mass measurement of an isolated stellar-mass black hole (BH). We used the Hubble Space Telescope (HST) to carry out precise astrometry of the source star of the long-duration (t E ≃ 270 days), high-magnification microlensing event MOA-2011-BLG-191/OGLE-2011-BLG-0462 (hereafter designated as MOA-11-191/OGLE-11-462), in the direction of the Galactic bulge. HST imaging, conducted at eight epochs over an interval of 6 yr, reveals a clear relativistic astrometric deflection of the background star’s apparent position. Ground-based photometry of MOA-11-191/OGLE-11-462 shows a parallactic signature of the effect of Earth’s motion on the microlensing light curve. Combining the HST astrometry with the ground-based light curve and the derived parallax, we obtain a lens mass of 7.1 ± 1.3 M ⊙ and a distance of 1.58 ± 0.18 kpc. We show that the lens emits no detectable light, which, along with having a mass higher than is possible for a white dwarf or neutron star, confirms its BH nature. Our analysis also provides an absolute proper motion for the BH. The proper motion is offset from the mean motion of Galactic disk stars at similar distances by an amount corresponding to a transverse space velocity of ∼45 km s−1, suggesting that the BH received a “natal kick” from its supernova explosion. Previous mass determinations for stellar-mass BHs have come from radial velocity measurements of Galactic X-ray binaries and from gravitational radiation emitted by merging BHs in binary systems in external galaxies. Our mass measurement is the first for an isolated stellar-mass BH using any technique.

46 citations

Journal ArticleDOI
TL;DR: In this article, the formation and evolution of 50-1300 binary systems consisting of a neutron star (NS) and a black hole (BH) were modeled using the binary population synthesis code COMPAS and the authors found that approximately 25-930 PSR+BHs will be radio alive whilst emitting GWs in the LISA frequency band.
Abstract: Binaries comprised of a neutron star (NS) and a black hole (BH) have so far eluded observations as pulsars and with gravitational waves (GWs). We model the formation and evolution of these NS+BH binaries including pulsar evolution using the binary population synthesis code COMPAS. We predict the presence of a total of 50-1300 binaries containing a pulsar and a BH (PSR+BHs) in the Galactic field. We find the population observable by the next-generation of radio telescopes, represented by the SKA and MeerKAT, current (LIGO/Virgo) and future (LISA) GW detectors. We conclude that the SKA will observe 1-60 PSR+BHs, with 0-4 binaries containing millisecond pulsars. MeerKAT is expected to observe 0-30 PSR+BH systems. Future radio detections of NS+BHs will constrain uncertain binary evolution processes such as BH natal kicks. We show that systems in which the NS formed first (NSBH) can be distinguished from those where the BH formed first (BHNS) by their pulsar and binary properties. We find 40% of the LIGO/Virgo observed NS+BHs from a Milky-Way like field population will have a chirp mass $\geq 3.0$ M$_\odot$. We estimate the spin distributions of NS+BHs with two models for the spins of BHs. The remnants of BHNS mergers will have a spin of $\sim$0.4, whilst NSBH merger remnants can have a spin of $\sim$0.6 or $\sim$0.9 depending on the model for BH spins. We estimate that approximately 25-930 PSR+BHs will be radio alive whilst emitting GWs in the LISA frequency band, raising the possibility of joint observation by the SKA and LISA.

40 citations

Journal ArticleDOI
TL;DR: The population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs were reported in this article , where the binary black hole merger rate, allowing for evolution with redshift, was estimated to be between 17.9 and 44 Gpc−3 yr−1 at a fiducial redshift.
Abstract: We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star–black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc−3 yr−1 and the neutron star–black hole merger rate to be between 7.8 and 140 Gpc−3 yr−1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc−3 yr−1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)κ with κ=2.9−1.8+1.7 for z≲1. Using both binary neutron star and neutron star–black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2−0.2+0.1 to 2.0−0.3+0.3M⊙. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3−0.5+0.3 and 27.9−1.8+1.9M⊙. While we continue to find that the mass distribution of a binary’s more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M⊙, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χi≈0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum.22 MoreReceived 4 February 2022Revised 28 October 2022Accepted 19 December 2022DOI:https://doi.org/10.1103/PhysRevX.13.011048Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasGravitational wave sourcesGravitational wavesTechniquesGravitational wave detectionGravitation, Cosmology & Astrophysics

35 citations

Posted Content
TL;DR: The second GWTC-2.1 catalog as mentioned in this paper reports on a deeper list of candidate events observed over the same period, which employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event.
Abstract: The second gravitational-wave transient catalog, GWTC-2, reported on 39 compact binary coalescences observed by the Advanced LIGO and Advanced Virgo detectors between 1 April 2019 15:00 UTC and 1 October 2019 15:00 UTC. Here, we present GWTC-2.1, which reports on a deeper list of candidate events observed over the same period. We analyze the final version of the strain data over this period, which is now publicly released. We employ three matched-filter search pipelines for candidate identification, and estimate the probability of astrophysical origin for each candidate event. While GWTC-2 used a false alarm rate threshold of 2 per year, we include in GWTC-2.1, 1201 candidates that pass a false alarm rate threshold of 2 per day. We calculate the source properties of a subset of 44 high-significance candidates that have a probability of astrophysical origin greater than 0.5, using the default priors. Of these candidates, 36 have been reported in GWTC-2. If the 8 additional high-significance candidates presented here are astrophysical, the mass range of candidate events that are unambiguously identified as binary black holes (both objects $\geq 3M_\odot$) is increased compared to GWTC-2, with total masses from $\sim 14M_\odot$ for GW190924_021846 to $\sim 184M_\odot$ for GW190426_190642. The primary components of two new candidate events (GW190403_051519 and GW190426_190642) fall in the mass gap predicted by pair-instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events ($q \lt 0.61$ and $q \lt 0.62$ at $90\%$ credibility for GW190403_051519 and GW190917_114630 respectively), and find that 2 of the 8 new events have effective inspiral spins $\chi_\mathrm{eff} > 0$ (at $90\%$ credibility), while no binary is consistent with $\chi_\mathrm{eff} \lt 0$ at the same significance.

35 citations

References
More filters
Journal ArticleDOI
TL;DR: The Two Micron All Sky Survey (2MASS) as mentioned in this paper collected 25.4 Tbytes of raw imaging data from two dedicated 1.3 m diameter telescopes located at Mount Hopkins, Arizona and CerroTololo, Chile.
Abstract: Between 1997 June and 2001 February the Two Micron All Sky Survey (2MASS) collected 25.4 Tbytes of raw imagingdatacovering99.998%ofthecelestialsphereinthenear-infraredJ(1.25 � m),H(1.65 � m),andKs(2.16 � m) bandpasses. Observations were conducted from two dedicated 1.3 m diameter telescopes located at Mount Hopkins, Arizona,andCerroTololo,Chile.The7.8sofintegrationtimeaccumulatedforeachpointontheskyandstrictquality control yielded a 10 � point-source detection level of better than 15.8, 15.1, and 14.3 mag at the J, H, and Ks bands, respectively, for virtually the entire sky. Bright source extractions have 1 � photometric uncertainty of <0.03 mag and astrometric accuracy of order 100 mas. Calibration offsets between any two points in the sky are <0.02 mag. The 2MASS All-Sky Data Release includes 4.1 million compressed FITS images covering the entire sky, 471 million source extractions in a Point Source Catalog, and 1.6 million objects identified as extended in an Extended Source Catalog.

12,126 citations

Journal ArticleDOI
TL;DR: In this article, the average extinction law over the 3.5 micron to 0.125 wavelength range was derived for both diffuse and dense regions of the interstellar medium. And the validity of the law over a large wavelength interval suggests that the processes which modify the sizes and compositions of grains are stochastic in nature.
Abstract: The parameterized extinction data of Fitzpatrick and Massa (1986, 1988) for the ultraviolet and various sources for the optical and near-infrared are used to derive a meaningful average extinction law over the 3.5 micron to 0.125 wavelength range which is applicable to both diffuse and dense regions of the interstellar medium. The law depends on only one parameter R(V) = A(V)/E(B-V). An analytic formula is given for the mean extinction law which can be used to calculate color excesses or to deredden observations. The validity of the law over a large wavelength interval suggests that the processes which modify the sizes and compositions of grains are stochastic in nature and very efficient.

11,704 citations

Journal ArticleDOI
TL;DR: Astropy as discussed by the authors is a Python package for astronomy-related functionality, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions.
Abstract: We present the first public version (v02) of the open-source and community-developed Python package, Astropy This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions Significant functionality is under activedevelopment, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions

9,720 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +1008 moreInstitutions (96)
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$, and the final black hole mass is $62^{+4}_{-4} M_\odot$, with $3.0^{+0.5}_{-0.5} M_\odot c^2$ radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

9,596 citations

Journal ArticleDOI
TL;DR: The emcee algorithm as mentioned in this paper is a Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010).
Abstract: We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the astrophysics literature. The algorithm behind emcee has several advantages over traditional MCMC sampling methods and it has excellent performance as measured by the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that it requires hand-tuning of only 1 or 2 parameters compared to ~N2 for a traditional algorithm in an N-dimensional parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.

8,805 citations

Related Papers (5)