scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions

01 May 2002-Journal of Geodesy (Springer-Verlag)-Vol. 76, Iss: 5, pp 279-299
TL;DR: In this article, Horner's method is used to compute a scaled version of the Legendre function, complete to degree and order 2700 for all latitudes (except at the poles for first derivatives).
Abstract: Spherical harmonic expansions form partial sums of fully normalised associated Legendre functions (ALFs). However, when evaluated increasingly close to the poles, the ultra-high degree and order (e.g. 2700) ALFs range over thousands of orders of magnitude. This causes existing recursion techniques for computing values of individual ALFs and their derivatives to fail. A common solution in geodesy is to evaluate these expansions using Clenshaw's method, which does not compute individual ALFs or their derivatives. Straightforward numerical principles govern the stability of this technique. Elementary algebra is employed to illustrate how these principles are implemented in Clenshaw's method. It is also demonstrated how existing recursion algorithms for computing ALFs and their first derivatives are easily modified to incorporate these same numerical principles. These modified recursions yield scaled ALFs and first derivatives, which can then be combined using Horner's scheme to compute partial sums, complete to degree and order 2700, for all latitudes (except at the poles for first derivatives). This exceeds any previously published result. Numerical tests suggest that this new approach is at least as precise and efficient as Clenshaw's method. However, the principal strength of the new techniques lies in their simplicity of formulation and implementation, since this quality should simplify the task of extending the approach to other uses, such as spherical harmonic analysis.

Summary (5 min read)

1 Introduction

  • Current geodetic practice is witnessing an increase in the construction and use of ultrahigh degree spherical harmonic expansions of the geopotential or topography.
  • These have taken the form of simpleeffects models (eg. Featherstone, 1999; Nov´ak et al., 2001) for which synthetic geopotential coefficients up to degree and order2700 and2160, respectively, were produced without reference to a mass distribution.
  • Hybrids of source and effects models also exist.
  • Haagmans (2000) combines empirically determined coefficients with synthetic ones derived from numerical integration over isostatically compensated source masses to degree and order2160.
  • The numerical means for including the necessary ALFs constitutes the principal chal- lenge to evaluating ultra-high degree spherical harmonic expansions.

1.1 Spherical Harmonic Expansions

  • The general notationS (d), (d)m , X (d) m andP (d) nm( ) is used whenever a textual or mathematical reference applies to both the undifferentiated quantities and the first derivatives simultaneously.
  • Underflows in the computation of anyP (d) nm( ) excludes the corresponding (matching degree and order) coefficients from contributing toS(d), whereas an overflow in the computation of one or moreP (d) nm( ) prevents any result forS (d) from being achieved at all.
  • Thus, IEEE double precision only permits a maximum range of 620 orders of magnitude within which to compute and store the requiredP (d) nm( ) values.
  • A numerically more stable alternative to these standard recursion relations is the Clenshaw (1955) method (cf. Tscherning and Poder, 1982; Gleason, 1985; Deakin, 1998).
  • These principles are quite simple, both in concept and in application.

2 Forward Recursions for the Calculation of ALFs

  • The most direct approach for evaluatingS (d) (Eq. 1) employs a recursive algorithm to computeP nm( ).
  • These values ofP (d) nm( ) are multiplied by the correspondingEnm terms to yield the required series values ofX (d) m (Eq. 3), which subsequently yield (d)m (Eq. 2) and henceS(d) (Eq. 1).
  • UnlikeP nm( ) cosm sinm , P (d6=0) nm ( ) cosm sinm is not normalised in 9 the correct usage of the word since its average squared value integrated over the unit sphere is not unity.
  • This paper focuses solely on the computation of fully normalised ALFs and their first derivatives.
  • No numerical tests were conducted for the above quasinormalisations.

2.1 Standard Forward Column Methods

  • The most popular recursive algorithm used for computingP nm( ) in geodesy can be obtained by fully normalising, for example, Magnus et al. (1966, Eq. 4.3.3(2)).
  • Note that in Fig. 2, the degree increases in rows down, the order increases in columns to the right, and the diagonal elements of the matrix are the sectoral values.
  • This nomenclature will be employed throughout the paper.

2.2 Standard Forward Row Methods

  • The next approach is termed thestandard forward row recursion (Fig. 3), and appears to be rarely used in geodesy.
  • As with the standard forward column recursion (Section 2.1), the sectoralPmm( ) serve as seed values for the forward row recursion, and can be computed using Eq. (13).
  • The standard forward row recursion computes nonsectoralP nm( ) of constantn (a ‘row’ in Fig. 3) and sequentially decreasingm (to the left (ie., ‘forward’) from the diagonal in Fig. 3).
  • Using the same argument to that introduced for the forward column recursion, the nonexistant value ofP n;n+1( ) required to computeP n;n 1( ) in Eq. (18) may be disregarded because the corresponding recursion coefficient,hn;n 1, is always zero.
  • Note that, to computeP nm( ) using the forward row recursion, Eq. (18) uses the cor- responding sectoral values of the samen, rather than the samem, as seed values.

2.3 Numerical Problems with the Standard Forward Methods

  • Even when applied in IEEE double precision, both the standard forward column (Eq. 11) and standard forward row (Eq. 18) recursions will underflow forM > 1900 in the colatitude range 20Æ 160Æ.
  • The numerical instability of both these forward recursions is noted in the geodetic literature (eg. Gleason, 1985) and elsewhere (eg. Libbrecht, 1985).
  • 0 (ie., towards the poles) and asm increases.
  • Accordingly, the high degree and order values ofPmm( ) will exceed the range of magnitudes capable being stored in IEEE double precision, thereby resulting in an underflow.

2.4 Other Normalisations and the Edmonds Recursion

  • Belikov (1991) and Belikov and Taybatorov (1991) present a suite of recursive algorithms for computing the quantitieŝP (d)nm, whereP̂ (d) nm are related to un-normalisedP (d) nm according to the modified normalisation P̂nm( ) = 2 m n! (n+m)! Pnm( ) (25) However, this approach is also subject to numerical limitations.
  • The description of the test 14 results which support this claim indicate that these computations were only performed at the equator, although the point is not clear.
  • Nevertheless, Risbo (1996) includes a Fortran 77 subroutine for this recursion.
  • Therefore, although it may be possible to incorporate the new approaches presented here into the Risbo (1996) approach, it is clear that the Edmonds recursion alone does not solve the numerical problems encountered towards the poles as described in Section 1.2.

2.5 The Modified Forward Row Method

  • A simple, yet effective, method by which this problem of underflowingP mm( ) may be avoided is to eliminate theum term from the recursion process in Eq. (13).
  • This will be demonstrated numerically in Section 4. 16 2.6 Modified Forward Column Method Values ofP (d) nm( ) um may also be computed using what will be termed thefirst modified forward column recursion.
  • Thus, for the remainder of this paper, no partial sumsS(1) will be computed at the poles.

3.2 Reverse Column Method

  • Results from timing tests presented in Section 4.3 show the reverse column methods, described below, to be highly inefficient in comparison with the other approaches presented in this paper for evaluating the required partial sums.
  • Thus, the reverse column methods are used here to highlight the basic similarities and differences between these two approaches.
  • To compute any value ofPnm( ) Pmm( ) , the second modified forward column recursion (eg. 34) aggregates the necessary(almt) andblm recursive terms in the sequence of increasing degreel (sequentially down each column in Fig. 2).
  • The effect of using the recursion in Eq. (46) in this way is to sequentially aggregate the (almt) andblm recursive terms, in the sequence of decreasingl, until the recursion terminates at the computation ofsmm = Pnm( ) Pmm( ) .

3.3 Standard Clenshaw Methods

  • The standard Clenshaw methods, summarised below, closely resemble the reverse column recursions (Section 3.2).
  • The Clenshaw (1955) approach, which was formulated originally to evaluate partial sums of Chebyshev polynomials, was adapted for use in geodesy by Gulick (1970) to compute partial sums ofP (d) nm( ).
  • Section 3.3.1 introduces a sim- ple implementation of the Clenshaw (1955) approach, whilst Section 3.3.2 presents the implementation that is used more commonly in geodesy (cf. Gleason, 1985).

3.3.1 The first Clenshaw method

  • The simplest implementation of the Clenshaw (1955) technique, herein termed thefirst Clenshaw method, uses the recursions in Eqs. (46) and (47) to compute, directly, the intermediate sumsX (d) m Pmm( ) , without evaluating individual values ofP (d) nm( ) Pmm( ) .
  • As in the reverse column recursion (Section 3.2), the recursive process terminates at the computation ofsmm (on the diagonal in Fig. 7), except that, in this case, the sectoralsmm = Xm Pmm( ) .
  • This study is confined to the computation ofS (1).
  • These seed values allow the recursive computation of all_slm , of constantm and sequentially decreasingl, from _snm to _smm .

3.3.2 The second Clenshaw method

  • This allows the recursive computation of all slm , of constantm (a column in Fig. 7), and sequentially increasingl (upwards and towards the diagonal in Fig. 7), fromsnm to smm , wheresmm = Xm Pmm( )qm .
  • The standard approach (cf. Gleason, 1985; Deakin, 1998) is to combine these values using the implementation of Horner’s scheme given in Eq. (50).

4.1 Viable Methods

  • These algorithms are summarised in Table 1.
  • As mentioned in Section 2.6, the first (MFC-1) and second (MFC-2) modified forward column recursions are, essentially, a single method.
  • This leaves, to this point, five separate methods for computing spherical harmonic expansions.
  • The tests of numerical accuracy will use analytic solutions for the sum of the square ofP (d) nm( ), to compare the modified forward row and modified forward column algorithms only.

4.2 Relative Numerical Precision

  • The first step in comparing different methods for computing the partial sumsS (d) in Eq. (1) is to choose some appropriate values forEnm and .
  • The relative precision (RP) for each was calculated using RP = s(d) s(d)s(d) (55) wheres(d) is the value of Eq. (54) for the summation computed in precision by each respective method ands(d) is the result for the same sum computed using the second Clenshaw method in precision.
  • That is, all combinations of the five algorithms with the three implementations of Horner’s scheme showed that the choice of implementation of Horner’s scheme was irrelevant to the observed precision of the algorithm.
  • One interesting feature is that the relative precision signatures obtained from all of the column methods for the northern latitudes are almost identical, whilst the signatures for the southern latitudes are not (cf. Figs. 8 through 10).
  • This phenomenon is not observed in the accuracy tests for the two modified forward algorithms (Section 4.4).

4.3 Numerical Efficiency

  • The five methods that successfully computedS (d), for M = 2700 and for integer values of to the poles, were tested for their relative numerical efficiency.
  • The square roots and inverted square roots required to construct the recursion coefficients were computed once by each algorithm and then stored for multiple use in the synthesis 32 subroutines.
  • The CPU times for the reverse column algorithm are excessively large and so were extrapolated from the computation times for a single parallel.
  • All computations were performed, once again, on aSun Ultra 10 (333MHz) workstation that uses a virtual or ‘swapped’ RAM configuration, which is slower than actual RAM.
  • It should be noted that these CPU times, in addition to showing the relative efficiency of each approach, are also functions of the computer architecture, compiler and programming language employed, as well as the programmer’s implementation of these algorithms.

4.4 Accuracy

  • As mentioned, the numerical evaluations presented in Section 4.2 are tests of precision only, since both the tested algorithms and the ‘control’ algorithm computed in IEEE extended double precision may contain shared systematic errors.
  • These could be due to any one of compiler, computer architecture or programming errors, for example.
  • This necessitates that the squaring ofP (d) nm( ) um 10 280, as well as their combination using Horner’s scheme, be performed in IEEE extended double precision.
  • The modified forward column algorithm becomes increasingly less accurate than the modified forward row algorithm as the computation approaches the poles.
  • These results support those obtained for these two algorithms in the precision tests (Section 4.2).

5 Summary, Conclusion and Recommendation

  • This paper has shown that standard Clenshaw methods for evaluating high degree spherical harmonic expansions derive their stability from simple numerical principles.
  • An efficient technique for the computation of the gravimetric quantities from geoptential earth models.
  • 547–555. Libbrecht KG (1985) Practical considerations for the generation of large order spherical harmonics, also known as Geophys J Int 139.
  • The modified forward column and modified forward row recursions are immediately more versatile than the standard Clenshaw methods, since they do not automatically combine quantities of the same orderm.

Did you find this useful? Give us your feedback

Content maybe subject to copyright    Report

A unified approach to the Clenshaw summation
and the recursive computation of very high
degree and order fully normalised associated
Legendre functions
S. A. Holmes
1
, W. E. Featherstone
2
1
Department of Spatial Sciences, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia.
e-mail: holmes@vesta.curtin.edu.au, Tel: +61 8 9487 3838 Fax: +61 8 9266 2703
2
Department of Spatial Sciences, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia.
e-mail: W.Featherstone@cc.curtin.edu.au, Tel: +61 8 9266 2734 or 0401 103 734 Fax: +61 8 9266 2703
Send offprint requests to: S. A. Holmes

2
Abstract. Spherical harmonic expansions form partial sums of fully normalised asso-
ciated Legendre functions (ALFs). However, when evaluated increasingly close to the
poles, the ultra-high degree and order (eg. 2700) ALFs range over thousands of orders
of magnitude. This causes existing recursion techniques for computing values of indi-
vidual ALFs and their derivatives to fail. A common solution in geodesy is to evaluate
these expansions using Clenshaw’s (1955) method, which does not compute individual
ALFs or their derivatives. Straightforward numerical principles govern the stability of
this technique. This paper employs elementary algebra to illustrate how these principles
are implemented in Clenshaw’s method. It also demonstrates how existing recursion al-
gorithms for computing ALFs and their first derivatives are easily modified to incorporate
these same numerical principles. These modified recursions yield scaled ALFs and first
derivatives, which can then be combined using Horner’s scheme to compute partial sums,
complete to degree and order 2700, for all latitudes (except at the poles for first deriva-
tives). This exceeds any previously published result. Numerical tests suggest that this new
approach is at least as precise and efficient as Clenshaw’s method. However, the principal
strength of the new techniques lies in their simplicity of formulation and implementation,
since this quality should simplify the task of extending the approach to other uses, such
as spherical harmonic analysis.
Key words. Spherical harmonic expansions, Fully normalised associated Legendre Func-
tions, Clenshaw summation, Recursion, Horner’s scheme

3
1 Introduction
Current geodetic practice is witnessing an increase in the construction and use of ultra-
high degree spherical harmonic expansions of the geopotential or topography. For ex-
ample, Wenzel (1998) released coefficients up to degree
1800
, which were empirically
derived to describe the gravitational potential of the Earth. Wenzel (1998) states that the
maximum degree of
1800
for the spherical harmonic model was set by the numerical
stability of the recursion algorithm adopted to compute the required fully normalised as-
sociated Legendre functions (ALFs).
The recent interest in synthetic Earth gravity models, used for comparing and validat-
ing gravity field determination techniques, has already seen the use of ultra-high degree
spherical harmonic expansions. These have taken the form of simple effects models (eg.
Featherstone, 1999; Nov´ak et al., 2001) for which synthetic geopotential coefficients up to
degree and order
2700
and
2160
, respectively, were produced without reference to a mass
distribution. There is also interest in source models in which synthetic geopotential coef-
ficients are generated by analytical or numerical Newtonian integration over a synthetic
global density distribution and topography (eg. Pail, 1999). Hybrids of source and effects
models also exist. For example, Haagmans (2000) combines empirically determined co-
efficients with synthetic ones derived from numerical integration over isostatically com-
pensated source masses to degree and order
2160
. Lastly, other scientific disciplines, such
as meteorology, quantum physics and electronic engineering, are also also showing in-
creased interest in high degree spherical harmonic modelling and analysis.
The numerical means for including the necessary ALFs constitutes the principal chal-
lenge to evaluating ultra-high degree spherical harmonic expansions.Therefore, it is timely

4
to critically examine the accuracy and numerical efficiency of algorithms that compute in-
dividual ALFs and their partial sums.
1.1 Spherical Harmonic Expansions
Truncated spherical harmonic expansions of a function, or its derivatives, reduce to sums
S
(
d
)
of ALFs or their
d
-th derivatives, respectively. These are
S
(
d
)
=
c
M
X
m
=0
(
d
)
m
(1)
where
(
d
)
m
=
2
X
=1
8
>
>
<
>
>
:
X
(
d
)
m
cos
m
for
=1
X
(
d
)
m
sin
m
for
=2
(2)
and
X
(
d
)
m
=
M
X
n
=
E
nm
P
(
d
)
nm
(
)
(3)
For arguments of spherical polar coordinates (
r
,
,
) and for integer degree
n
0
and
order
0
m
n
:
M
is the maximum finite degree of the spherical harmonic expansion;
is an integer that may vary with
m
;
c
is a real numbered constant;
E
nm
is a real num-
ber incorporating the fully normalised spherical harmonic coefficients,
C
nm
1
and
C
nm
2
;
P
nm
(
)
are the fully normalised ALFs; the superscript
(
d
)
indicates the
d
-th derivative
with respect to
, or definite integration (
d
=
1
) between two parallels. This paper deals
only with undifferentiated functions (
d
=0
) or first derivatives of these functions (
d
=1
).
For
d
= 0
, the superscript
(
d
)
is omitted. Thus
S
(0)
,
(0)
m
,
X
(0)
m
and
P
(0)
nm
(
)
are written
S
,
m
,
X
m
and
P
nm
, respectively. First derivatives of these quantities are written
S
(1)
,
(1)
m
,
X
(1)
m
and
P
(1)
nm
(
)
, respectively. The general notation
S
(
d
)
,
(
d
)
m
,
X
(
d
)
m
and
P
(
d
)
nm
(
)
is used whenever a textual or mathematical reference applies to both the undifferentiated
quantities and the first derivatives simultaneously.

5
The example of a truncated spherical harmonic expansion of the gravitational potential
V
(
r;;
)
is instructive here. Often, it is written as
V
(
r;;
)=
GM
r
+
GM
r
M
X
n
=2
a
r
n
n
X
m
=0
(
C
nm
1
cos
m
+
C
nm
2
sin
m
)
P
nm
(
)
(4)
where
GM
is the product of the Universal gravitational constant and the mass of the
Earth. Alternatively, Eq. (4) may be written as
V
(
r;;
) =
GM
r
+
GM
r
M
X
m
=0
"
cos
m
M
X
n
=
a
r
n
C
nm
1
P
nm
(
)
+sin
m
M
X
n
=
a
r
n
C
nm
2
P
nm
(
)
#
(5)
where
is either
2
or
m
; whichever is the greater. Relating Eq. (5) to the form of Eqs. (1)
to (3) yields
E
nm
=
8
>
>
<
>
>
:
a
r
n
C
nm
1
;
for
=1
a
r
n
C
nm
2
;
for
=2
(6)
and
X
m
=
M
X
n
=
a
r
n
C
nm
P
nm
(
)
(7)
When evaluating gravimetric quantities (eg., disturbing potential, geoid heights, grav-
ity anomalies, etc.) in a sequence of points for which
r
and
are constant (ie., along a
geodetic parallel), the form of Eq. (5) is numerically more efficient than that of Eq. (4) (cf.
Tscherning et al., 1983). This is because each
X
m
in Eq. (3) is independent of
, and thus
need only be evaluated once for each parallel. If all such computation points are equally
spaced in longitude, further numerical efficiencies can be achieved through application
of the recursion algorithm developed by Rizos (1979). Abd-Elmotaal (1997) contains a
re-derivation of this algorithm which demonstrates that, contrary to the approach of Ri-
zos (1979), the algorithm can be applied in full without prior rotation of the geopotential
coefficients.

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a new high-resolution Earth's gravity field model named SGG-UGM-2 from satellite gravimetry, satellite altimetry and Earth Gravitational Model 2008 (EGM2008)-derived gravity data based on the theory of the ellipsoidal harmonic analysis and coefficient transformation (EHA-CT) is proposed.

29 citations


Cites methods from "A unified approach to the Clenshaw ..."

  • ...Not only in this step but also throughout the whole study, the numerical problem of computing high degree and order normalized associated Legendre functions is solved using the method proposed by [65]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a new high-resolution spherical harmonic representation of the Earth's topographic gravitational potential is proposed based on a refined Rock-Water-Ice (RWI) approach.
Abstract: RWI_TOPO_2015 is a new high-resolution spherical harmonic representation of the Earth’s topographic gravitational potential that is based on a refined Rock–Water–Ice (RWI) approach. This method is characterized by a three-layer decomposition of the Earth’s topography with respect to its rock, water, and ice masses. To allow a rigorous separate modeling of these masses with variable density values, gravity forward modeling is performed in the space domain using tesseroid mass bodies arranged on an ellipsoidal reference surface. While the predecessor model RWI_TOPO_2012 was based on the $$5'\times 5'$$ global topographic database DTM2006.0 (Digital Topographic Model 2006.0), the new RWI model uses updated height information of the $$1'\times 1'$$ Earth2014 topography suite. Moreover, in the case of RWI_TOPO_2015, the representation in spherical harmonics is extended to degree and order 2190 (formerly 1800). Beside a presentation of the used formalism, the processing for RWI_TOPO_2015 is described in detail, and the characteristics of the resulting spherical harmonic coefficients are analyzed in the space and frequency domain. Furthermore, this paper focuses on a comparison of the RWI approach to the conventionally used rock-equivalent method. For this purpose, a consistent rock-equivalent version REQ_TOPO_2015 is generated, in which the heights of water and ice masses are condensed to the constant rock density. When evaluated on the surface of the GRS80 ellipsoid (Geodetic Reference System 1980), the differences of RWI_TOPO_2015 and REQ_TOPO_2015 reach maximum amplitudes of about 1 m, 50 mGal, and 20 mE in terms of height anomaly, gravity disturbance, and the radial–radial gravity gradient, respectively. Although these differences are attenuated with increasing height above the ellipsoid, significant magnitudes can even be detected in the case of the satellite altitudes of current gravity field missions. In order to assess their performance, RWI_TOPO_2015, REQ_TOPO_2015, and RWI_TOPO_2012 are validated against independent gravity information of current global geopotential models, clearly demonstrating the attained improvements in the case of the new RWI model.

27 citations


Cites background or methods from "A unified approach to the Clenshaw ..."

  • ...(32), SH coefficients with a maximum degree of 2699 can then be derived, which is just within the numerical stability range of the Holmes and Featherstone (2002) ALF algorithm....

    [...]

  • ...Thus, for the new RWI model, an improved ALF algorithm based on Holmes and Featherstone (2002) is used that provides numerical stability for calculations up to d/o 2700....

    [...]

  • ...(41)– (43) is carried out by using an adapted version of the freely available harmonic_synth software (Holmes and Pavlis 2006) that also utilizes the ALF algorithm based on Holmes and Featherstone (2002)....

    [...]

01 Jan 2011
TL;DR: The Mohorovicic discontinuity (Moho) is the surface separating the Earth’s crust from the mantle, which is of great interest among geoscientists as mentioned in this paper.
Abstract: The Mohorovicic discontinuity (Moho), which is the surface separating the Earth’s crust from the mantle, is of great interest among geoscientists. The Moho depth can be determined by seismic and g ...

27 citations


Cites background from "A unified approach to the Clenshaw ..."

  • ...According to Ilk (1983), the following expressions are presented for first and second derivative of the associated Legendre function with respect to co-latitude (Ilk 1983, Z....

    [...]

Journal ArticleDOI
TL;DR: In this article, a tensor invariant approach for satellite gravity gradiometry analysis is proposed, which is based on products of second-order derivatives of the gravitational potential, and it is shown to be insensitive to the synthesis of unobserved gravity gradients.
Abstract: Although its use is widespread in several other scientific disciplines, the theory of tensor invariants is only marginally adopted in gravity field modeling. We aim to close this gap by developing and applying the invariants approach for geopotential recovery. Gravitational tensor invariants are deduced from products of second-order derivatives of the gravitational potential. The benefit of the method presented arises from its independence of the gradiometer instrument’s orientation in space. Thus, we refrain from the classical methods for satellite gravity gradiometry analysis, i.e., in terms of individual gravity gradients, in favor of the alternative invariants approach. The invariants approach requires a tailored processing strategy. Firstly, the non-linear functionals with regard to the potential series expansion in spherical harmonics necessitates the linearization and iterative solution of the resulting least-squares problem. From the computational point of view, efficient linearization by means of perturbation theory has been adopted. It only requires the computation of reference gravity gradients. Secondly, the deduced pseudo-observations are composed of all the gravitational tensor elements, all of which require a comparable level of accuracy. Additionally, implementation of the invariants method for large data sets is a challenging task. We show the fundamentals of tensor invariants theory adapted to satellite gradiometry. With regard to the GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite gradiometry mission, we demonstrate that the iterative parameter estimation process converges within only two iterations. Additionally, for the GOCE configuration, we show the invariants approach to be insensitive to the synthesis of unobserved gravity gradients.

27 citations


Cites background from "A unified approach to the Clenshaw ..."

  • ...Thong 1989; Balmino et al. 1991; Holmes and Featherstone 2002a, b)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a two-step spherical harmonic transformation (SHT) algorithm for geodesy, where the base functions of the spherical harmonic expansion are computed in the Fourier domain and the corresponding Legendre functions in the space and frequency domains.
Abstract: Spherical harmonic transformation is of practical interest in geodesy for transformation of globally distributed quantities such as gravity between space and frequency domains. The increasing spatial resolution of the latest and forthcoming gravitational models pose true computational challenges for classical algorithms since serious numerical instabilities arise during the computation of the respective base functions of the spherical harmonic expansion. A possible solution is the evaluation of the associated Legendre functions in the Fourier domain where numerical instabilities can be circumvented by an independent frequency-wise scaling of numerical coefficients into a numerically suitable double precision range. It is then rather straightforward to commit global fast data transformation into the Fourier domain and to evaluate subsequently spherical harmonic coefficients. For the inverse, the computation of respective Fourier coefficients from a given spherical harmonic model is performed as an inverse Fast Fourier Transform into globally distributed data points. The two-step formulation turns out to be stable even for very high resolutions as well as efficient when using state-of-the-art shared memory/multi-core architectures. In principle, any functional of the geopotential can be computed in this way. To give an example for the overall performance of the algorithm, we transformed an equiangular 1 arcmin grid of terrain elevation data corresponding to spherical harmonic degree and order 10800.

27 citations

References
More filters
01 Jan 1960
TL;DR: In this paper, the angular momentum, one of the most fundamental quantities in all of quantum mechanics, is introduced and a concise introduction to its application in atomic, molecular, and nuclear physics is provided.
Abstract: This book offers a concise introduction to the angular momentum, one of the most fundamental quantities in all of quantum mechanics. Beginning with the quantization of angular momentum, spin angular momentum, and the orbital angular momentum, the author goes on to discuss the Clebsch-Gordan coefficients for a two-component system. After developing the necessary mathematics, specifically spherical tensors and tensor operators, the author then investigates the 3-j, 6-j, and 9-j symbols. Throughout, the author provides practical applications to atomic, molecular, and nuclear physics. These include partial-wave expansions, the emission and absorption of particles, the proton and electron quadrupole moment, matrix element calculation in practice, and the properties of the symmetrical top molecule.

5,050 citations

Book
21 Sep 1957
TL;DR: In this article, the angular momentum, one of the most fundamental quantities in all of quantum mechanics, is introduced and a concise introduction to its application in atomic, molecular, and nuclear physics is provided.
Abstract: This book offers a concise introduction to the angular momentum, one of the most fundamental quantities in all of quantum mechanics. Beginning with the quantization of angular momentum, spin angular momentum, and the orbital angular momentum, the author goes on to discuss the Clebsch-Gordan coefficients for a two-component system. After developing the necessary mathematics, specifically spherical tensors and tensor operators, the author then investigates the 3-j, 6-j, and 9-j symbols. Throughout, the author provides practical applications to atomic, molecular, and nuclear physics. These include partial-wave expansions, the emission and absorption of particles, the proton and electron quadrupole moment, matrix element calculation in practice, and the properties of the symmetrical top molecule.

4,377 citations


"A unified approach to the Clenshaw ..." refers background in this paper

  • ...Risbo (1996) claims that the Edmonds (1957) recursion for D-matricies can be used to compute fully normalised ALFs up to degree 200,000....

    [...]

01 Jul 1998
TL;DR: The Earth Gravitational Model 1996 (EGM96) as discussed by the authors was developed by the NASA Goddard Space Flight Center (GSFC), the National Imagery and Mapping Agency (NIMA), and The Ohio State University (OSU) to develop an improved spherical harmonic model of the Earth's gravitational potential.
Abstract: The NASA Goddard Space Flight Center (GSFC), the National Imagery and Mapping Agency (NIMA), and The Ohio State University (OSU) have collaborated to develop an improved spherical harmonic model of the Earth's gravitational potential to degree 360. The new model, Earth Gravitational Model 1996 (EGM96), incorporates improved surface gravity data, altimeter-derived gravity anomalies from ERS-1 and from the GEOSAT Geodetic Mission (GM), extensive satellite tracking data-including new data from Satellite Laser Ranging (SLR), the Global Postioning System (GPS), NASA's Tracking and Data Relay Satellite System (TDRSS), the French DORIS system, and the US Navy TRANET Doppler tracking system-as well as direct altimeter ranges from TOPEX/POSEIDON (T/P), ERS-1, and GEOSAT. The final solution blends a low-degree combination model to degree 70, a block-diagonal solution from degree 71 to 359, and a quadrature solution at degree 360. The model was used to compute geoid undulations accurate to better than one meter (with the exception of areas void of dense and accurate surface gravity data) and realize WGS84 as a true three-dimensional reference system. Additional results from the EGM96 solution include models of the dynamic ocean topography to degree 20 from T/P and ERS-1 together, and GEOSAT separately, and improved orbit determination for Earth-orbiting satellites.

832 citations


"A unified approach to the Clenshaw ..." refers methods in this paper

  • ...For example, all methods will report underflows (8 ) when EGM96 coefficients are employed for the lower degrees....

    [...]

  • ...Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96, NASA/TP-1998206861, National Aeronautics and Space Administration, Washington....

    [...]

  • ...For Enm , one might use empirically generated coefficients such as EGM96 (Lemoine et al., 1998) and/or GPM98B (Wenzel, 1998) to compute the lower degreeEnm ....

    [...]

  • ...For Enm , one might use empirically generated coefficients such as EGM96 (Lemoine et al., 1998) and/or GPM98B (Wenzel, 1998) to compute the lower degree Enm ....

    [...]

Journal ArticleDOI

820 citations