scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit

TL;DR: In this article, the photonic bandgap (PBG) structure for microwave integrated circuits is presented, which is a two-dimensional square lattice with each element consisting of a metal pad and four connecting branches.
Abstract: This paper presents a novel photonic bandgap (PBG) structure for microwave integrated circuits. This new PBG structure is a two-dimensional square lattice with each element consisting of a metal pad and four connecting branches. Experimental results of a microstrip on a substrate with the PEG ground plane displays a broad stopband, as predicted by finite-difference time-domain simulations. Due to the slow-wave effect generated by this unique structure, the period of the PBG lattice is only 0.1/spl lambda//sub 0/ at the cutoff frequency, resulting in the most compact PEG lattice ever achieved. In the passband, the measured slow-wave factor (/spl beta//k/sub 0/) is 1.2-2.4 times higher and insertion loss is at the same level compared to a conventional 50-/spl Omega/ line. This uniplanar compact PBG (UC-PBG) structure can be built using standard planar fabrication techniques without any modification. Several application examples have also been demonstrated, including a nonleaky conductor-backed coplanar waveguide and a compact spurious-free bandpass filter. This UC-PBG structure should find wide applications for high-performance and compact circuit components in microwave and millimeter-wave integrated circuits.
Citations
More filters
Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: In this article, the basic physics and applications of planar metamaterials, often called metasurfaces, which are composed of optically thin and densely packed planar arrays of resonant or nearly resonant subwavelength elements, are reviewed.

1,047 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the reflection phase feature of EBG surfaces, which can be used to identify the input-match frequency band inside of which a low profile wire antenna exhibits a good return loss.
Abstract: Mushroom-like electromagnetic band-gap (EBG) structures exhibit unique electromagnetic properties that have led to a wide range of electromagnetic device applications. This paper focuses on the reflection phase feature of EBG surfaces: when plane waves normally illuminate an EBG structure, the phase of the reflected field changes continuously from 180/spl deg/ to -180/spl deg/ versus frequency. One important application of this feature is that one can replace a conventional perfect electric conductor (PEC) ground plane with an EBG ground plane for a low profile wire antenna design. For this design, the operational frequency band of an EBG structure is defined as the frequency region within which a low profile wire antenna radiates efficiently, namely, having a good return loss and radiation patterns. The operational frequency band is the overlap of the input-match frequency band and the surface-wave frequency bandgap. It is revealed that the reflection phase curve can be used to identify the input-match frequency band inside of which a low profile wire antenna exhibits a good return loss. The surface-wave frequency bandgap of the EBG surface that helps improve radiation patterns is very close to its input-match frequency band, resulting in an effective operational frequency band. In contrast, a thin grounded slab cannot work efficiently as a ground plane for low profile wire antennas because its surface-wave frequency bandgap and input-match frequency band do not overlap. Parametric studies have been performed to obtain design guidelines for EBG ground planes. Two novel EBG ground planes with interesting electromagnetic features are also presented. The rectangular patch EBG ground plane has a polarization dependent reflection phase and the slotted patch EBG ground plane shows a compact size.

945 citations


Cites background from "A uniplanar compact photonic-bandga..."

  • ...These structures are broadly classified as metamaterials, and are typically realized by periodic dielectric substrates and various metallization patterns [9]–[11]....

    [...]

  • ...Recent studies on EBG structures have revealed that they can satisfy the PMC-like condition in a certain frequency band [9], [10]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a super-compact stopband microstrip structure is proposed, where the frequency gap is produced by an array of complementary split ring resonators (CSRRs), a concept proposed for the first time on the ground plane.
Abstract: In this letter a super-compact stopband microstrip structure is proposed. The frequency gap is produced by an array of complementary split ring resonators (CSRRs)-a concept proposed here for the first time-etched on the ground plane. This behavior is interpreted as due to the presence of a negative effective dielectric permittivity in the vicinity of resonance. The resulting device produces a deep rejection frequency band with sharp cutoff, and a pass band that exhibits very low losses and good matching. Due to the sub-lambda operation of CSRRs, the electrical size of the device is very small.

703 citations


Cites background from "A uniplanar compact photonic-bandga..."

  • ...microstrip EBG devices obtained by etching holes or patterns in the ground plane have been found to exhibit wide and deep stopbands [4]–[6]....

    [...]

Book
24 Nov 2008
TL;DR: In this paper, the FDTD method for periodic structure analysis is used for periodic structures analysis of EBG surfaces and low profile wire antennas are used for EBG surface wave antennas.
Abstract: Preface 1. Introduction 2. FDTD Method for periodic structure analysis 3. EBG Characterizations and classifications 4. Design and optimizations of EBG structures 5. Patch antennas with EBG structures 6. Low profile wire antennas on EBG surfaces 7. Surface wave antennas Appendix: EBG literature review.

634 citations

References
More filters
Book
01 Apr 1990

10,459 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Book
01 Jun 1979
TL;DR: In this article, the authors present a quasi-static analysis of an Enclosed Microstrip and a Slot-Coupled Microstrip Line, as well as a fullwave analysis of Discontinuity Inductance Evaluation.
Abstract: Microstrip Lines I: Quasi-Static Analyses, Dispersion Models, and Measurements -Introduction. Quasi-Static Analyses of a Microstrip. Microstrip Dispersion Models. Microstrip Transitions. Microstrip Measurements. Fabrication. Microstrip Lines II: Fullwave Analyses, Design Considerations, and Applications - Methods of Fullwave Analysis. Analysis of an Open Microstrip. Analysis of an Enclosed Microstrip. Design Considerations. Other Types of Microstrip Lines. Microstrip Applications. Microstrip Discontinuities I: Quasi-Static Analysis and Characterization -Introduction. Discontinuity Capacitance Evaluation. Discontinuity Inductance Evaluation. Characterization of Various Discontinuities. Compensated Microstrip Discontinuities. Microstrip Discontinuities II: Fullwave Analysis and Measurements - Planar Waveguide Analysis. Fullwave Analysis of Discontinuities. Discontinuity Measurements. Slotlines -Introduction. Slotline Analysis. Design Considerations. Slotline Discontinuities. Variants of Slotline. Slotline Transitions. Slotline Applications. Defected Ground Structure (DGS) -Introduction. DGS Characteristics. Modeling of DGS. Applications of DGS. Coplanar Lines: Coplanar Waveguide and Coplanar Strips -Introduction. Analysis. Design Considerations. Losses in Coplanar Lines. Effect of Tolerances. Comparison with Microstrip Line and Slotline. Transitions. Discontinuities in Coplanar Lines. Coplanar Line Circuits. Coupled Microstrip Lines -Introduction. General Analysis of Coupled Lines. Characteristics of Coupled Microstrip Lines. Measurements on Coupled Microstrip Lines. Design Considerations for Coupled Microstrip Lines. Slot-Coupled Microstrip Lines. Coupled Multiconductor Microstrip Lines. Discontinuities in Coupled Microstrip Lines. Substrate Integrated Waveguide (SIW) -Introduction. Analysis Techniques of SIW. Design Considerations. Other SIW Configurations. Transitions Between SIW and Planar Transmission Lines. SIW Components and Antennas. Fabrication Technologies and Materials.

2,182 citations

Journal ArticleDOI
TL;DR: In this article, the photonic band gap structures, those three-dimensional periodic dielectric structures that are to photon waves as semiconductor crystals are to electron waves, are discussed.
Abstract: The analogy between electromagnetic wave propagation in multidimensionally periodic structures and electron-wave propagation in real crystals has proven to be a fruitful one. Initial efforts were motivated by the prospect of a photonic band gap. a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden irrespective of the propagation direction in space. Today many new ideas and applications are being pursued in two and three dimensions and in metallic, dielectric, and acoustic structures. We review the early motivations for this research, which were derived from the need for a photonic band gap in quantum optics. This need led to a series of experimental and theoretical searches for the elusive photonic band-gap structures, those three-dimensionally periodic dielectric structures that are to photon waves as semiconductor crystals are to electron waves. We describe how the photonic semiconductor can be doped, producing tiny electromagnetic cavities. Finally, we summarize some of the anticipated implications of photonic band structure for quantum electronics and for other areas of physics and electrical engineering.

1,352 citations

Journal ArticleDOI
C.P. Wen1
05 May 1969
TL;DR: In this article, the coplanar waveguide is used for non-reciprocal magnetic device applications because of the built-in circularly polarized magnetic vector at the air-dielectric boundary between the conductors.
Abstract: A coplanar waveguide consists of a strip of thin metallic film on the surface of a dielectric slab with two ground electrodes running adjacent and parallel to the strip. This novel transmission line readily lends itself to nonreciprocal magnetic device applications because of the built-in circularly polarized magnetic vector at the air-dielectric boundary between the conductors. Practical applications of the coplanar waveguide have been experimentally demonstrated by measurements on resonant isolators and differential phase shifters fabricated on low-loss dielectric substrates with high dielectric constants. Calculations have been made for the characteristic impedance, phase velocity, and ripper bound of attenuation of a transmission line whose electrodes are all on one side of a dielectric substrate. These calculations are in good agreement with preliminary experimental results. The coplanar configuration of the transmission system not only permits easy shunt connection of external elements in hybrid integrated circuits, but also adapts well to the fabrication of monolithic integrated systems. Low-loss dielectric substrates with high dielectric constants may be employed to reduce the longitudinal dimension of the integrated circuits because the characteristic impedance of the coplanar waveguide is relatively independent of the substrate thickness; this may be of vital importance for Iow-frequency integrated microwave systems.

910 citations