scispace - formally typeset
Open AccessJournal ArticleDOI

A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus

Reads0
Chats0
TLDR
RNA sequencing in primary human hepatocytes activated with synthetic double-stranded RNA to mimic HCV infection provides new insights into the genetic regulation of HCV clearance and its clinical management.
Abstract
Chronic infection with hepatitis C virus (HCV) is a common cause of liver cirrhosis and cancer. We performed RNA sequencing in primary human hepatocytes activated with synthetic double-stranded RNA to mimic HCV infection. Upstream of IFNL3 (IL28B) on chromosome 19q13.13, we discovered a new transiently induced region that harbors a dinucleotide variant ss469415590 (TT or ΔG), which is in high linkage disequilibrium with rs12979860, a genetic marker strongly associated with HCV clearance. ss469415590[ΔG] is a frameshift variant that creates a novel gene, designated IFNL4, encoding the interferon-λ4 protein (IFNL4), which is moderately similar to IFNL3. Compared to rs12979860, ss469415590 is more strongly associated with HCV clearance in individuals of African ancestry, although it provides comparable information in Europeans and Asians. Transient overexpression of IFNL4 in a hepatoma cell line induced STAT1 and STAT2 phosphorylation and the expression of interferon-stimulated genes. Our findings provide new insights into the genetic regulation of HCV clearance and its clinical management.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Interferon-Stimulated Genes: A Complex Web of Host Defenses

TL;DR: This review begins by introducing interferon (IFN) and the JAK-STAT signaling pathway to highlight features that impact ISG production and describes ways in which ISGs both enhance innate pathogen-sensing capabilities and negatively regulate signaling through the Jak-STAT pathway.
Journal ArticleDOI

Type I interferons in infectious disease.

TL;DR: Experimental models of tuberculosis have demonstrated that prostaglandin E2 and interleukin-1 inhibit type I IFN expression and its downstream effects, demonstrating that a cross-regulatory network of cytokines operates during infectious diseases to provide protection with minimum damage to the host.
Journal ArticleDOI

Shared and Distinct Functions of Type I and Type III Interferons.

TL;DR: A model wherein type III IFNs serve as a front-line defense that controls infection at epithelial barriers while minimizing damaging inflammatory responses, reserving the more potent type I IFN response for when local responses are insufficient is discussed.
References
More filters
Journal ArticleDOI

A Map of Human Genome Variation From Population-Scale Sequencing

TL;DR: The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype as mentioned in this paper, and the results of the pilot phase of the project, designed to develop and compare different strategies for genomewide sequencing with high-throughput platforms.
Journal ArticleDOI

The International HapMap Project

John W. Belmont, +145 more
- 18 Dec 2003 - 
TL;DR: The HapMap will allow the discovery of sequence variants that affect common disease, will facilitate development of diagnostic tools, and will enhance the ability to choose targets for therapeutic intervention.
Journal ArticleDOI

Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance.

TL;DR: It is reported that a genetic polymorphism near the IL28B gene, encoding interferon-λ-3 (IFN-α-2a) is associated with an approximately twofold change in response to treatment, both among patients of European ancestry and African-Americans.
Journal ArticleDOI

Production of infectious hepatitis C virus in tissue culture from a cloned viral genome

TL;DR: It is shown that the JFH1 genome replicates efficiently and supports secretion of viral particles after transfection into a human hepatoma cell line (Huh7) and provides a powerful tool for studying the viral life cycle and developing antiviral strategies.
Related Papers (5)