scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model

01 Oct 1993-The Journal of Physical Chemistry (American Chemical Society)-Vol. 97, Iss: 40, pp 10269-10280
TL;DR: In this paper, the authors present an approach to generate electrostatic potential (ESP) derived charges for molecules, which optimally reproduce the intermolecular interaction properties of molecules with a simple two-body additive potential, provided that a suitably accurate level of quantum mechanical calculation is used to derive the ESP around the molecule.
Abstract: We present a new approach to generating electrostatic potential (ESP) derived charges for molecules. The major strength of electrostatic potential derived charges is that they optimally reproduce the intermolecular interaction properties of molecules with a simple two-body additive potential, provided, of course, that a suitably accurate level of quantum mechanical calculation is used to derive the ESP around the molecule. Previously, the major weaknesses of these charges have been that they were not easily transferable between common functional groups in related molecules, they have often been conformationally dependent, and the large charges that frequently occur can be problematic for simulating intramolecular interactions
Citations
More filters
Journal ArticleDOI
TL;DR: A general Amber force field for organic molecules is described, designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens.
Abstract: We describe here a general Amber force field (GAFF) for organic molecules. GAFF is designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens. It uses a simple functional form and a limited number of atom types, but incorporates both empirical and heuristic models to estimate force constants and partial atomic charges. The performance of GAFF in test cases is encouraging. In test I, 74 crystallographic structures were compared to GAFF minimized structures, with a root-mean-square displacement of 0.26 A, which is comparable to that of the Tripos 5.2 force field (0.25 A) and better than those of MMFF 94 and CHARMm (0.47 and 0.44 A, respectively). In test II, gas phase minimizations were performed on 22 nucleic acid base pairs, and the minimized structures and intermolecular energies were compared to MP2/6-31G* results. The RMS of displacements and relative energies were 0.25 A and 1.2 kcal/mol, respectively. These data are comparable to results from Parm99/RESP (0.16 A and 1.18 kcal/mol, respectively), which were parameterized to these base pairs. Test III looked at the relative energies of 71 conformational pairs that were used in development of the Parm99 force field. The RMS error in relative energies (compared to experiment) is about 0.5 kcal/mol. GAFF can be applied to wide range of molecules in an automatic fashion, making it suitable for rational drug design and database searching.

13,615 citations

Journal ArticleDOI
TL;DR: Together, these backbone and side chain modifications (hereafter called ff14SB) not only better reproduced their benchmarks, but also improved secondary structure content in small peptides and reproduction of NMR χ1 scalar coupling measurements for proteins in solution.
Abstract: Molecular mechanics is powerful for its speed in atomistic simulations, but an accurate force field is required. The Amber ff99SB force field improved protein secondary structure balance and dynamics from earlier force fields like ff99, but weaknesses in side chain rotamer and backbone secondary structure preferences have been identified. Here, we performed a complete refit of all amino acid side chain dihedral parameters, which had been carried over from ff94. The training set of conformations included multidimensional dihedral scans designed to improve transferability of the parameters. Improvement in all amino acids was obtained as compared to ff99SB. Parameters were also generated for alternate protonation states of ionizable side chains. Average errors in relative energies of pairs of conformations were under 1.0 kcal/mol as compared to QM, reduced 35% from ff99SB. We also took the opportunity to make empirical adjustments to the protein backbone dihedral parameters as compared to ff99SB. Multiple sm...

6,367 citations

Journal ArticleDOI
TL;DR: A third‐generation point‐charge all‐atom force field for proteins is developed and initial tests on peptides demonstrated a high‐degree of similarity between the calculated and the statistically measured Ramanchandran maps for both Ace‐Gly‐nme and Ace‐Ala‐Nme di‐peptides.
Abstract: Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides calculated using B3LYP/cc-pVTZ//HF/6-31G** quantum mechanical methods. The main-chain torsion parameters were obtained by fitting to the energy profiles of Ace-Ala-Nme and Ace-Gly-Nme di-peptides calculated using MP2/cc-pVTZ//HF/6-31G** quantum mechanical methods. All other parameters were taken from the existing AMBER data base. The major departure from previous force fields is that all quantum mechanical calculations were done in the condensed phase with continuum solvent models and an effective dielectric constant of e = 4. We anticipate that this force field parameter set will address certain critical short comings of previous force fields in condensed-phase simulations of proteins. Initial tests on peptides demonstrated a high-degree of similarity between the calculated and the statistically measured Ramanchandran maps for both Ace-Gly-Nme and Ace-Ala-Nme di-peptides. Some highlights of our results include (1) well-preserved balance between the extended and helical region distributions, and (2) favorable type-II poly-proline helical region in agreement with recent experiments. Backward compatibility between the new and Cornell et al. charge sets, as judged by overall agreement between dipole moments, allows a smooth transition to the new force field in the area of ligand-binding calculations. Test simulations on a large set of proteins are also discussed. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1999–2012, 2003

4,162 citations

Journal ArticleDOI
TL;DR: Anautomatic algorithm of perceiving atom types that are defined in a description table, and an automatic algorithm of assigning bond types just based on atomic connectivity are presented.
Abstract: In molecular mechanics (MM) studies, atom types and/or bond types of molecules are needed to determine prior to energy calculations. We present here an automatic algorithm of perceiving atom types that are defined in a description table, and an automatic algorithm of assigning bond types just based on atomic connectivity. The algorithms have been implemented in a new module of the AMBER packages. This auxiliary module, antechamber (roughly meaning "before AMBER"), can be applied to generate necessary inputs of leap-the AMBER program to generate topologies for minimization, molecular dynamics, etc., for most organic molecules. The algorithms behind the manipulations may be useful for other molecular mechanical packages as well as applications that need to designate atom types and bond types.

4,124 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present conformational energies for a molecular mechanical model (Parm99) developed for organic and biological molecules using the restrained electrostatic potential (RESP) approach to derive the partial charges.
Abstract: In this study, we present conformational energies for a molecular mechanical model (Parm99) developed for organic and biological molecules using the restrained electrostatic potential (RESP) approach to derive the partial charges. This approach uses the simple "generic" force field model (Parm94), and attempts to add a minimal number of extra Fourier components to the torsional energies, but doing so only when there is a physical justification. The results are quite encouraging, not only for the 34-molecule set that has been studied by both the highest level ab initio model (GVB/LMP2) and experiment, but also for the 55-molecule set for which high-quality experimental data are available. Considering the 55 molecules studied by all the force field models for which there are experimental data, the average absolute errors (AAEs) are 0.28 (this model), 0.52 (MM3), 0.57 (CHARMm (MSI)), and 0.43 kcal/mol (MMFF). For the 34-molecule set, the AAEs of this model versus experiment and ab initio are 0.28 and 0.27 kcal/mol, respectively. This is a lower error than found with MM3 and CHARMm, and is comparable to that found with MMFF (0.31 and 0.22 kcal/mol). We also present two examples of how well the torsional parameters are transferred from the training set to the test set. The absolute errors of molecules in the test set are only slightly larger than in the training set (differences of <0.1 kcal/mol). Therefore, it can be concluded that a simple "generic" force field with a limited number of specific torsional parameters can describe intra- and intermolecular interactions, although all comparison molecules were selected from our 82-compound training set. We also show how this effective two-body

3,748 citations

References
More filters
Journal ArticleDOI
TL;DR: At the core of MIDAS is a hierarchical database system, designed specifically for macromolecules, that is both compact in its storage requirements and fast in its data access.

950 citations