scispace - formally typeset
Search or ask a question
Journal ArticleDOI

A20 haploinsufficiency (HA20): clinical phenotypes and disease course of patients with a newly recognised NF-kB-mediated autoinflammatory disease

TL;DR: Early-onset recurrent oral, genital and/or gastrointestinal ulcers are the hallmark feature of HA20, and treatment regimens should be based on disease severity, and cytokine inhibitors are often required to control relapses.
Abstract: Objectives The association between mutations in TNFAIP3 , encoding the NF-kB regulatory protein A20, and a new autoinflammatory disease has recently been recognised. This study aims at describing the clinical phenotypes and disease course of patients with A20 haploinsufficiency (HA20). Methods Data for all cases from the initial publication, and additional cases identified through collaborations since, were collected using standardised data collection forms. Results A total of 16 patients (13 female) from seven families with a genetic diagnosis of HA20 were included. The disease commonly manifested in early childhood (range: first week of life to 29 years of age). The main clinical symptoms were recurrent oral, genital and/or gastrointestinal ulcers (16/16), musculoskeletal (9/16) and gastrointestinal complaints (9/16), cutaneous lesions (8/16), episodic fever (7/16), and recurrent infections (7/16). Clinical phenotypes varied considerably, even within families. Relapsing-remitting disease course was most common, and one patient died. Laboratory abnormalities included elevated acute-phase reactants and fluctuating presence of various autoantibodies such as antinuclear antibodies (4/10 patients tested) and anti-dsDNA (2/5). Tissue biopsy of different sites revealed non-specific chronic inflammation (6/12 patients tested), findings consistent with class V lupus nephritis in one patient, and pustules and normal results in two patients each. All patients were treated: 4/16 received colchicine and 12/16 various immunosuppressive agents. Cytokine inhibitors effectively suppressed systemic inflammation in 7/9 patients. Conclusions Early-onset recurrent oral, genital and/or gastrointestinal ulcers are the hallmark feature of HA20. Frequency and intensity of other clinical manifestations varied highly. Treatment regimens should be based on disease severity, and cytokine inhibitors are often required to control relapses.
Citations
More filters
Journal ArticleDOI
TL;DR: There have been significant advances in the understanding of T NF signalling pathways in the last decade, and this short review aims to elucidate some of the most recent advances involving TNF signalling in health and disease.
Abstract: The master pro-inflammatory cytokine, tumour necrosis factor (TNF), has been shown to modulate multiple signalling pathways, with wide-ranging downstream effects. TNF plays a vital role in the typical immune response through the regulation of a number of pathways encompassing an immediate inflammatory reaction with significant innate immune involvement as well as cellular activation with subsequent proliferation and programmed cell death or necrosis. As might be expected with such a broad spectrum of cellular effects and complex signalling pathways, TNF has also been implicated in a number of disease states, such as rheumatoid arthritis, ankylosing spondylitis, and Crohn’s disease. Since the time of its discovery over 40 years ago, TNF ligand and its receptors, TNF receptor (TNFR) 1 and 2, have been categorised into two complementary superfamilies, namely TNF (TNFSF) and TNFR (TNFRSF), and 19 ligands and 29 receptors have been identified to date. There have been significant advances in our understanding of TNF signalling pathways in the last decade, and this short review aims to elucidate some of the most recent advances involving TNF signalling in health and disease.

190 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the NF-κB inducers, signaling pathways, and regulators involved in immune homeostasis as well as detail the importance of post-translational regulation by ubiquitination.
Abstract: The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory response. In the first part of this review, we discuss the NF-κB inducers, signaling pathways, and regulators involved in immune homeostasis as well as detail the importance of post-translational regulation by ubiquitination in NF-κB function. We also indicate the stages of central and peripheral tolerance where NF-κB plays a fundamental role. With respect to central tolerance, we detail how NF-κB regulates medullary thymic epithelial cell (mTEC) development, homeostasis, and function. Moreover, we elaborate on its role in the migration of double-positive (DP) thymocytes from the thymic cortex to the medulla. With respect to peripheral tolerance, we outline how NF-κB contributes to the inactivation and destruction of autoreactive T and B lymphocytes as well as the differentiation of CD4+-T cell subsets that are implicated in immune tolerance. In the latter half of the review, we describe the contribution of NF-κB to the pathogenesis of autoimmunity and autoinflammation. The recent discovery of mutations involving components of the pathway has both deepened our understanding of autoimmune disease and informed new therapeutic approaches to treat these illnesses.

108 citations

Journal ArticleDOI
TL;DR: The function of the A20/TN FAIP3 enzyme and its critical role in various innate and adaptive immune cells is discussed and the latest findings on TNFAIP3 SNPs in human autoinflammatory and autoimmune diseases are discussed.
Abstract: Immune cell activation is a stringently regulated process, as exaggerated innate and adaptive immune responses can lead to autoinflammatory and autoimmune diseases. Perhaps the best-characterized molecular pathway promoting cell activation is the nuclear factor-κB (NF-κB) signaling pathway. Stimulation of this pathway leads to transcription of numerous pro-inflammatory and cell-survival genes. Several mechanisms tightly control NF-κB activity, including the key regulatory zinc finger (de)ubiquitinating enzyme A20/tumor necrosis factor α-induced protein 3 (TNFAIP3). Single nucleotide polymorphisms (SNPs) in the vicinity of the TNFAIP3 gene are associated with a spectrum of chronic systemic inflammatory diseases, indicative of its clinical relevance. Mice harboring targeted cell-specific deletions of the Tnfaip3 gene in innate immune cells such as macrophages spontaneously develop autoinflammatory disease. When immune cells involved in the adaptive immune response, such as dendritic cells or B-cells, are targeted for A20/TNFAIP3 deletion, mice develop spontaneous inflammation that resembles human autoimmune disease. Therefore, more knowledge on A20/TNFAIP3 function in cells of the immune system is beneficial in our understanding of autoinflammation and autoimmunity. Using the aforementioned mouse models, novel A20/TNFAIP3 functions have recently been described including control of necroptosis and inflammasome activity. In this review, we discuss the function of the A20/TNFAIP3 enzyme and its critical role in various innate and adaptive immune cells. Finally, we discuss the latest findings on TNFAIP3 SNPs in human autoinflammatory and autoimmune diseases and address that genotyping of TNFAIP3 SNPs may guide treatment decisions.

101 citations


Cites background from "A20 haploinsufficiency (HA20): clin..."

  • ...However, careful evaluation of clinical characteristics can aid diagnosing patients with HA20 or Behçet disease (128)....

    [...]

  • ..., IL-1β, IL-6, TNFα, IL-17, and IFNγ) and most patients respond to treatment with cytokine inhibitors (anti-TNF and anti-IL-1) (112, 127, 128)....

    [...]

Journal ArticleDOI
TL;DR: It is shown that the deubiquitinating enzyme A20 inhibits inflammasome-dependent arthritis development by regulating macrophage necroptosis and this function depends on its ZnF7 ubiquitin binding domain.
Abstract: Deficiency in the deubiquitinating enzyme A20 causes severe inflammation in mice, and impaired A20 function is associated with human inflammatory diseases. A20 has been implicated in negatively regulating NF-κB signalling, cell death and inflammasome activation; however, the mechanisms by which A20 inhibits inflammation in vivo remain poorly understood. Genetic studies in mice revealed that its deubiquitinase activity is not essential for A20 anti-inflammatory function. Here we show that A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis and that this function depends on its zinc finger 7 (ZnF7). We provide genetic evidence that RIPK1 kinase-dependent, RIPK3-MLKL-mediated necroptosis drives inflammasome activation in A20-deficient macrophages and causes inflammatory arthritis in mice. Single-cell imaging revealed that RIPK3-dependent death caused inflammasome-dependent IL-1β release from lipopolysaccharide-stimulated A20-deficient macrophages. Importantly, mutation of the A20 ZnF7 ubiquitin binding domain caused arthritis in mice, arguing that ZnF7-dependent inhibition of necroptosis is critical for A20 anti-inflammatory function in vivo.

99 citations

Journal ArticleDOI
TL;DR: Discovery of a possible shared immune pathway in SLE patients, either with rare or common variants, can provide important clues to better understand this complex disorder, it’s prognosis and can help guide new therapeutic approaches.
Abstract: Systemic lupus erythematosus (SLE) is a clinically and genetically heterogeneous autoimmune disease. The etiology of lupus and the contribution of genetic, environmental, infectious and hormonal factors to this phenotype have yet to be elucidated. The most straightforward approach to unravel the molecular pathogenesis of lupus may rely on studies of patients who present with early-onset severe phenotypes. Typically, they have at least one of the following clinical features: childhood onset of severe disease (<5 years), parental consanguinity, and presence of family history for autoimmune diseases in a first-degree relative. These patients account for a small proportion of patients with lupus but they inform considerable knowledge about cellular pathways contributing to this inflammatory phenotype. In recent years with the aid of new sequencing technologies, novel or rare pathogenic variants have been reported in over 30 genes predisposing to SLE and SLE-like diseases. Future studies will likely discover many more genes with private variants associated to lupus-like phenotypes. In addition, genome-wide association studies (GWAS) have identified a number of common alleles (SNPs), which increase the risk of developing lupus in adult age. Discovery of a possible shared immune pathway in SLE patients, either with rare or common variants, can provide important clues to better understand this complex disorder, it’s prognosis and can help guide new therapeutic approaches. The aim of this review is to summarize the current knowledge of the clinical presentation, genetic diagnosis and mechanisms of disease in patents with lupus and lupus-related phenotypes.

67 citations


Cites background from "A20 haploinsufficiency (HA20): clin..."

  • ...Phe224Serfs*4 mutation was initially diagnosed with SLE, including central nervous system (CNS) vasculitis [96,97]....

    [...]

References
More filters
Journal ArticleDOI
Paul Burton1, David Clayton2, Lon R. Cardon, Nicholas John Craddock3  +192 moreInstitutions (4)
07 Jun 2007-Nature
TL;DR: This study has demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in theBritish population is generally modest.
Abstract: There is increasing evidence that genome-wide association ( GWA) studies represent a powerful approach to the identification of genes involved in common human diseases. We describe a joint GWA study ( using the Affymetrix GeneChip 500K Mapping Array Set) undertaken in the British population, which has examined similar to 2,000 individuals for each of 7 major diseases and a shared set of similar to 3,000 controls. Case-control comparisons identified 24 independent association signals at P < 5 X 10(-7): 1 in bipolar disorder, 1 in coronary artery disease, 9 in Crohn's disease, 3 in rheumatoid arthritis, 7 in type 1 diabetes and 3 in type 2 diabetes. On the basis of prior findings and replication studies thus-far completed, almost all of these signals reflect genuine susceptibility effects. We observed association at many previously identified loci, and found compelling evidence that some loci confer risk for more than one of the diseases studied. Across all diseases, we identified a large number of further signals ( including 58 loci with single-point P values between 10(-5) and 5 X 10(-7)) likely to yield additional susceptibility loci. The importance of appropriately large samples was confirmed by the modest effect sizes observed at most loci identified. This study thus represents a thorough validation of the GWA approach. It has also demonstrated that careful use of a shared control group represents a safe and effective approach to GWA analyses of multiple disease phenotypes; has generated a genome-wide genotype database for future studies of common diseases in the British population; and shown that, provided individuals with non-European ancestry are excluded, the extent of population stratification in the British population is generally modest. Our findings offer new avenues for exploring the pathophysiology of these important disorders. We anticipate that our data, results and software, which will be widely available to other investigators, will provide a powerful resource for human genetics research.

9,244 citations

Journal ArticleDOI
05 Aug 2004-Nature
TL;DR: A novel ubiquitin ligase domain is defined and two sequential mechanisms by which A20 downregulates NF-κB signalling are identified, both of which participate in mediating a distinct regulatory effect.
Abstract: NF-kappaB transcription factors mediate the effects of pro-inflammatory cytokines such as tumour necrosis factor-alpha and interleukin-1beta. Failure to downregulate NF-kappaB transcriptional activity results in chronic inflammation and cell death, as observed in A20-deficient mice. A20 is a potent inhibitor of NF-kappaB signalling, but its mechanism of action is unknown. Here we show that A20 downregulates NF-kappaB signalling through the cooperative activity of its two ubiquitin-editing domains. The amino-terminal domain of A20, which is a de-ubiquitinating (DUB) enzyme of the OTU (ovarian tumour) family, removes lysine-63 (K63)-linked ubiquitin chains from receptor interacting protein (RIP), an essential mediator of the proximal TNF receptor 1 (TNFR1) signalling complex. The carboxy-terminal domain of A20, composed of seven C2/C2 zinc fingers, then functions as a ubiquitin ligase by polyubiquitinating RIP with K48-linked ubiquitin chains, thereby targeting RIP for proteasomal degradation. Here we define a novel ubiquitin ligase domain and identify two sequential mechanisms by which A20 downregulates NF-kappaB signalling. We also provide an example of a protein containing separate ubiquitin ligase and DUB domains, both of which participate in mediating a distinct regulatory effect.

1,749 citations

Journal ArticleDOI
29 Sep 2000-Science
TL;DR: A20 is critical for limiting inflammation by terminating TNF-induced NF-kappaB responses in vivo and is associated with severe inflammation and cachexia in mice deficient for A20.
Abstract: A20 is a cytoplasmic zinc finger protein that inhibits nuclear factor κB (NF-κB) activity and tumor necrosis factor (TNF)–mediated programmed cell death (PCD). TNF dramatically increases A20 messenger RNA expression in all tissues. Mice deficient for A20 develop severe inflammation and cachexia, are hypersensitive to both lipopolysaccharide and TNF, and die prematurely. A20-deficient cells fail to terminate TNF-induced NF-κB responses. These cells are also more susceptible than control cells to undergo TNF-mediated PCD. Thus, A20 is critical for limiting inflammation by terminating TNF-induced NF-κB responses in vivo.

1,392 citations

Journal ArticleDOI
TL;DR: The results provide strong support for the association of at least seven genetic loci and psoriasis (each with combined P < 5 × 10−8) and suggest priority targets for study in other auto-immune disorders.
Abstract: Psoriasis is a common immune-mediated disorder that affects the skin, nails and joints. To identify psoriasis susceptibility loci, we genotyped 438,670 SNPs in 1,409 psoriasis cases and 1,436 controls of European ancestry. We followed up 21 promising SNPs in 5,048 psoriasis cases and 5,041 controls. Our results provide strong support for the association of at least seven genetic loci and psoriasis (each with combined P < 5 x 10(-8)). Loci with confirmed association include HLA-C, three genes involved in IL-23 signaling (IL23A, IL23R, IL12B), two genes that act downstream of TNF-alpha and regulate NF-kappaB signaling (TNIP1, TNFAIP3) and two genes involved in the modulation of Th2 immune responses (IL4, IL13). Although the proteins encoded in these loci are known to interact biologically, we found no evidence for epistasis between associated SNPs. Our results expand the catalog of genetic loci implicated in psoriasis susceptibility and suggest priority targets for study in other auto-immune disorders.

1,207 citations

Journal ArticleDOI
TL;DR: It is shown that these two SNP associations are statistically independent, are each reproducible in the comparison of the authors' data and WTCCC data, and define risk and protective haplotypes for rheumatoid arthritis at 6q23.
Abstract: To identify susceptibility alleles associated with rheumatoid arthritis, we genotyped 397 individuals with rheumatoid arthritis for 116,204 SNPs and carried out an association analysis in comparison to publicly available genotype data for 1,211 related individuals from the Framingham Heart Study. After evaluating and adjusting for technical and population biases, we identified a SNP at 6q23 (rs10499194, approximately 150 kb from TNFAIP3 and OLIG3) that was reproducibly associated with rheumatoid arthritis both in the genome-wide association (GWA) scan and in 5,541 additional case-control samples (P = 10(-3), GWA scan; P < 10(-6), replication; P = 10(-9), combined). In a concurrent study, the Wellcome Trust Case Control Consortium (WTCCC) has reported strong association of rheumatoid arthritis susceptibility to a different SNP located 3.8 kb from rs10499194 (rs6920220; P = 5 x 10(-6) in WTCCC). We show that these two SNP associations are statistically independent, are each reproducible in the comparison of our data and WTCCC data, and define risk and protective haplotypes for rheumatoid arthritis at 6q23.

568 citations

Related Papers (5)