scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Aberration-free ultra-thin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces

TL;DR: In this paper, the concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength spaced optical antennas.
Abstract: The concept of optical phase discontinuities is applied to the design and demonstration of aberration-free planar lenses and axicons, comprising a phased array of ultrathin subwavelength spaced optical antennas. The lenses and axicons consist of radial distributions of V-shaped nanoantennas that generate respectively spherical wavefronts and non-diffracting Bessel beams at telecom wavelengths. Simulations are also presented to show that our aberration-free designs are applicable to high numerical aperture lenses such as flat microscope objectives.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam.
Abstract: Metamaterials are artificially fabricated materials that allow for the control of light and acoustic waves in a manner that is not possible in nature. This Review covers the recent developments in the study of so-called metasurfaces, which offer the possibility of controlling light with ultrathin, planar optical components. Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.

4,613 citations

Journal ArticleDOI
15 Mar 2013-Science
TL;DR: Progress in the optics of metasurfaces is reviewed and promising applications for surface-confined planar photonics components are discussed and the studies of new, low-loss, tunable plasmonic materials—such as transparent conducting oxides and intermetallics—that can be used as building blocks for metAsurfaces will complement the exploration of smart designs and advanced switching capabilities.
Abstract: Metamaterials, or engineered materials with rationally designed, subwavelength-scale building blocks, allow us to control the behavior of physical fields in optical, microwave, radio, acoustic, heat transfer, and other applications with flexibility and performance that are unattainable with naturally available materials. In turn, metasurfaces-planar, ultrathin metamaterials-extend these capabilities even further. Optical metasurfaces offer the fascinating possibility of controlling light with surface-confined, flat components. In the planar photonics concept, it is the reduced dimensionality of the optical metasurfaces that enables new physics and, therefore, leads to functionalities and applications that are distinctly different from those achievable with bulk, multilayer metamaterials. Here, we review the progress in developing optical metasurfaces that has occurred over the past few years with an eye toward the promising future directions in the field.

2,562 citations

Journal ArticleDOI
03 Jun 2016-Science
TL;DR: The results firmly establish that metalenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy, with image qualities comparable to a state-of-the-art commercial objective.
Abstract: Subwavelength resolution imaging requires high numerical aperture (NA) lenses, which are bulky and expensive. Metasurfaces allow the miniaturization of conventional refractive optics into planar structures. We show that high-aspect-ratio titanium dioxide metasurfaces can be fabricated and designed as metalenses with NA = 0.8. Diffraction-limited focusing is demonstrated at wavelengths of 405, 532, and 660 nm with corresponding efficiencies of 86, 73, and 66%. The metalenses can resolve nanoscale features separated by subwavelength distances and provide magnification as high as 170×, with image qualities comparable to a state-of-the-art commercial objective. Our results firmly establish that metalenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy.

2,406 citations

Journal ArticleDOI
TL;DR: A metasurface platform based on high-contrast dielectric elliptical nanoposts that provides complete control of polarization and phase with subwavelength spatial resolution and an experimentally measured efficiency ranging from 72% to 97%, depending on the exact design.
Abstract: Metasurfaces are planar structures that locally modify the polarization, phase and amplitude of light in reflection or transmission, thus enabling lithographically patterned flat optical components with functionalities controlled by design. Transmissive metasurfaces are especially important, as most optical systems used in practice operate in transmission. Several types of transmissive metasurface have been realized, but with either low transmission efficiencies or limited control over polarization and phase. Here, we show a metasurface platform based on high-contrast dielectric elliptical nanoposts that provides complete control of polarization and phase with subwavelength spatial resolution and an experimentally measured efficiency ranging from 72% to 97%, depending on the exact design. Such complete control enables the realization of most free-space transmissive optical elements such as lenses, phase plates, wave plates, polarizers, beamsplitters, as well as polarization-switchable phase holograms and arbitrary vector beam generators using the same metamaterial platform.

2,126 citations

Journal ArticleDOI
TL;DR: The design of the hologram integrates a ground metal plane with a geometric metasurface that enhances the conversion efficiency between the two circular polarization states, leading to high diffraction efficiency without complicating the fabrication process.
Abstract: Using a metasurface comprising an array of nanorods with different orientations and a backreflector, a hologram image can be obtained in the visible and near-infrared with limited loss of light intensity.

2,075 citations