scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Abiotic and Biotic Controls on Soil Organo–Mineral Interactions: Developing Model Structures to Analyze Why Soil Organic Matter Persists

TL;DR: In this article, the conundrum as to why some SOM decomposes rapidly, while other thermodynamically unstable SOM can persist on centennial time scales leads to substantial uncertainty in model structures, as well as uncertainty in the predictability of the land carbon sink trajectory.
Abstract: Soil organic matter (SOM) represents the single largest actively cycling reservoir of terrestrial organic carbon, accounting for more than three times as much carbon as that present in the atmosphere or terrestrial vegetation (Schmidt et al. 2011; Lehmann and Kleber 2015). SOM is vulnerable to decomposition to either CO2 or CH4, which can increase atmospheric greenhouse gas concentrations (GHGs) and serve as a positive feedback to climate change. Conversely, the formation and stabilization of SOM within aggregates or associated with soil minerals can lead to carbon sequestration, representing a negative feedback to climate change. However, the conundrum as to why some SOM decomposes rapidly, while other thermodynamically unstable SOM can persist on centennial time scales (Hedges et al. 2000), leads to substantial uncertainty in model structures, as well as uncertainty in the predictability of the land carbon sink trajectory.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: A range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.
Abstract: Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesize theory and broad, multidisciplinary evidence for the effects of increasing [CO2 ] (iCO2 ) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industrial times. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2 responses are high in comparison to experiments and predictions from theory. Plant mortality and soil carbon iCO2 responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2 , albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.

234 citations


Cites background from "Abiotic and Biotic Controls on Soil..."

  • ...All rights reserved 4 Organic matter decomposition Residence times of litter and soil organic matter (SOM) vary from minutes to millenia and can respond rapidly to environmental perturbation (Trumbore, 2009; Schmidt et al., 2011; Dwivedi et al., 2019)....

    [...]

  • ...However, the complex processes that drive the formation and decomposition of SOM make the response of Csoil to eCO2 difficult to predict (Schmidt et al., 2011; Dwivedi et al., 2019; Section II.4)....

    [...]

Journal ArticleDOI
TL;DR: It is shown, using meta-analysis, that reductions in soil C stocks with warming are associated with increased ratios of ligninase to cellulase activity, and that warming stimulates microbial utilization of recalcitrant C pools, possibly exacerbating long-term climate-C feedbacks.
Abstract: Climate warming affects soil carbon (C) dynamics, with possible serious consequences for soil C stocks and atmospheric CO2 concentrations. However, the mechanisms underlying changes in soil C storage are not well understood, hampering long-term predictions of climate C-feedbacks. The activity of the extracellular enzymes ligninase and cellulase can be used to track changes in the predominant C sources of soil microbes and can thus provide mechanistic insights into soil C loss pathways. Here we show, using meta-analysis, that reductions in soil C stocks with warming are associated with increased ratios of ligninase to cellulase activity. Furthermore, whereas long-term (≥5 years) warming reduced the soil recalcitrant C pool by 14%, short-term warming had no significant effect. Together, these results suggest that warming stimulates microbial utilization of recalcitrant C pools, possibly exacerbating long-term climate-C feedbacks.

114 citations


Cites background from "Abiotic and Biotic Controls on Soil..."

  • ...Nonetheless, enzyme-mediated SOM decomposition is usually assumed to be a first-order kinetic relationship (Chen et al., 2019), and ESMs typically lack the biological, physical and chemical protection of SOM as discussed above (Dwivedi et al., 2019)....

    [...]

Journal ArticleDOI
TL;DR: This work developed three relational metabolite dendrograms using molecular properties and putative biochemical transformations and performed ecological null modeling, showing that stochastic processes drove molecular properties while biochemical transformations were structured deterministically.
Abstract: Environmental metabolomes are fundamentally coupled to microbially-linked biogeochemical processes within ecosystems. However, significant gaps exist in our understanding of their spatiotemporal organization, limiting our ability to uncover transferrable principles and predict ecosystem function. We propose that a theoretical paradigm, which integrates concepts from metacommunity ecology, is necessary to reveal underlying mechanisms governing metabolomes. We call this synthesis between ecology and metabolomics ‘meta-metabolome ecology’ and demonstrate its utility using a mass spectrometry dataset. We developed three relational metabolite dendrograms using molecular properties and putative biochemical transformations and performed ecological null modeling. Based upon null modeling results, we show that stochastic processes drove molecular properties while biochemical transformations were structured deterministically. We further suggest that potentially biochemically active metabolites were more deterministically assembled than less active metabolites. Understanding variation in the influences of stochasticity and determinism provides a way to focus attention on which meta-metabolomes and which parts of meta-metabolomes are most likely to be important to consider in mechanistic models. We propose that this paradigm will allow researchers to study the connections between ecological systems and their molecular processes in previously inaccessible detail. Despite growing interest in environmental metabolomics, we lack conceptual frameworks for considering how metabolites vary across space and time in ecological systems. Here, the authors apply (species) community assembly concepts to metabolomics data, offering a way forward in understanding the assembly of metabolite assemblages.

46 citations

References
More filters
Journal ArticleDOI
TL;DR: Van Genuchten et al. as mentioned in this paper proposed a closed-form analytical expression for predicting the hydraulic conductivity of unsaturated soils based on the Mualem theory, which can be used to predict the unsaturated hydraulic flow and mass transport in unsaturated zone.
Abstract: A new and relatively simple equation for the soil-water content-pressure head curve, 8(h), is described in this paper. The particular form of the equation enables one to derive closedform analytical expressions for the relative hydraulic conductivity, Kr, when substituted in the predictive conductivity models of N.T. Burdine or Y. Mualem. The resulting expressions for Kr(h) contain three independent parameters which may be obtained by fitting the proposed soil-water retention model to experimental data. Results obtained with the closed-form analytical expressions based on the Mualem theory are compared with observed hydraulic conductivity data for five soils with a wide range of hydraulic properties. The unsaturated hydraulic conductivity is predicted well in four out of five cases. It is found that a reasonable description of the soil-water retention curve at low water contents is important for an accurate prediction of the unsaturated hydraulic conductivity. Additional Index Words: soil-water diffusivity, soil-water retention curve. van Genuchten, M. Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898. T USE OF NUMERICAL MODELS for simulating fluid flow and mass transport in the unsaturated zone has become increasingly popular the last few years. Recent literature indeed demonstrates that much effort is put into the development of such models (Reeves and Duguid, 1975; Segol, 1976; Vauclin et al., 1979). Unfortunately, it appears that the ability to fully characterize the simulated system has not kept pace with the numerical and modeling expertise. Probably the single most important factor limiting the successful application of unsaturated flow theory to actual field problems is the lack of information regarding the parameters entering the governing transfer equations. Reliable estimates of the unsaturated hydraulic conductivity are especially difficult to obtain, partly because of its extensive variability in the field, and partly because measuring this parameter is time-consuming and expensive. Several investigators have, for these reasons, used models for calculating the unsaturated conductivity from the more easily measured soil-water retention curve. Very popular among these models has been the Millington-Quirk method (Millington and Quirk, 1961), various forms of which have been applied with some success in a number of studies (cf. Jackson et al., 1965; Jackson, 1972; Green and Corey, 1971; Bruce, 1972). Unfortunately, this method has the disadvantage of producing tabular results which, for example when applied to nonhomogeneous soils in multidimensional unsaturated flow models, are quite tedious to use. Closed-form analytical expressions for predicting 1 Contribution from the U. S. Salinity Laboratory, AR-SEA, USDA, Riverside, CA 92501. Received 29 June 1979. Approved 19 May I960. 'Soil Scientist, Dep. of Soil and Environmental Sciences, University of California, Riverside, CA 92521. The author is located at the U. S. Salinity Lab., 4500 Glenwood Dr., Riverside, CA 92502. the unsaturated hydraulic conductivity have also been developed. For example, Brooks and Corey (1964) and Jeppson (1974) each used an analytical expression for the conductivity based on the Burdine theory (Burdine, 1953). Brooks and Corey (1964, 1966) obtained fairly accurate predictions with their equations, even though a discontinuity is present in the slope of both the soil-water retention curve and the unsaturated hydraulic conductivity curve at some negative value of the pressure head (this point is often referred to as the bubbling pressure). Such a discontinuity sometimes prevents rapid convergence in numerical saturated-unsaturated flow problems. It also appears that predictions based on the Brooks and Corey equations are somewhat less accurate than those obtained with various forms of the (modified) Millington-Quirk method. Recently Mualem (1976a) derived a new model for predicting the hydraulic conductivity from knowledge of the soil-water retention curve and the conductivity at saturation. Mualem's derivation leads to a simple integral formula for the unsaturated hydraulic conductivity which enables one to derive closed-form analytical expressions, provided suitable equations for the soil-water retention curves are available. It is the purpose of this paper to derive such expressions using an equation for the soil-water retention curve which is both continuous and has a continuous slope. The resulting conductivity models generally contain three independent parameters which may be obtained by matching the proposed soil-water retention curve to experimental data. Results obtained with the closedform equations based on the Mualem theory will be compared with observed data for a few soils having widely varying hydraulic properties. THEORETICAL Equations Based on Mualem's Model The following equation was derived by Mualem (1976a) for predicting the relative hydraulic conductivity (Kr) from knowledge of the soil-water retention curve

22,781 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations


"Abiotic and Biotic Controls on Soil..." refers methods in this paper

  • ...When this is done, microbial community structure is often aggregated into the r versus K strategists that are adopted from the MacArthur and Wilson (1967) classification scheme....

    [...]

Book
01 Jan 1967
TL;DR: The Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

12,546 citations

Journal ArticleDOI
TL;DR: In this article, a simple analytic model is proposed which predicts the unsaturated hydraulic conductivity curves by using the moisture content-capillary head curve and the measured value of the hydraulic conductivities at saturation.
Abstract: A simple analytic model is proposed which predicts the unsaturated hydraulic conductivity curves by using the moisture content-capillary head curve and the measured value of the hydraulic conductivity at saturation. It is similar to the Childs and Collis-George (1950) model but uses a modified assumption concerning the hydraulic conductivity of the pore sequence in order to take into account the effect of the larger pore section. A computational method is derived for the determination of the residual water content and for the extrapolation of the water content-capillary head curve as measured in a limited range. The proposed model is compared with the existing practical models of Averjanov (1950), Wyllie and Gardner (1958), and Millington and Quirk (1961) on the basis of the measured data of 45 soils. It seems that the new model is in better agreement with observations.

6,529 citations


"Abiotic and Biotic Controls on Soil..." refers background in this paper

  • ...In addition, the Mualem and Burdine formulations are typically used to describe relative permeability functions (Brooks and Corey 1964; Mualem 1976; van Genuchten 1980)....

    [...]

Journal ArticleDOI
01 Nov 1931-Physics
TL;DR: In this article, the authors used Darcey's law to derive the equation K∇2ψ+∇K·∇ψ +g∂K/∂z=−ρsA∆ψ/∆t for the capillary conduction of liquids in porous mediums.
Abstract: The flow of liquids in unsaturated porous mediums follows the ordinary laws of hydrodynamics, the motion being produced by gravity and the pressure gradient force acting in the liquid. By making use of Darcey's law, that flow is proportional to the forces producing flow, the equation K∇2ψ+∇K·∇ψ+g∂K/∂z=−ρsA∂ψ/∂t may be derived for the capillary conduction of liquids in porous mediums. It is possible experimentally to determine the capillary potential ψ=∫dp/ρ, the capillary conductivity K, which is defined by the flow equation q=K(g−▿ψ), and the capillary capacity A, which is the rate of change of the liquid content of the medium with respect to ψ. These variables are analogous, respectively, to the temperature, thermal conductivity, and thermal capacity in the case of heat flow. Data are presented and application of the equations is made for the capillary conduction of water through soil and clay but the mathematical formulations and the experimental methods developed may be used to express capillary flow ...

5,340 citations


"Abiotic and Biotic Controls on Soil..." refers methods in this paper

  • ...The Richards equation (Richards 1931) has been widely used in the literature for describing partially saturated flow assuming a passive air phase present at atmospheric pressure (e....

    [...]

  • ...The Richards equation (Richards 1931) has been widely used in the literature for describing partially saturated flow assuming a passive air phase present at atmospheric pressure (e.g., Neuman 1973; Panday et al. 1993; Dwivedi et al. 2016, 2017b)....

    [...]