scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Accelerated discovery of new magnets in the Heusler alloy family.

01 Apr 2017-Science Advances (American Association for the Advancement of Science)-Vol. 3, Iss: 4
TL;DR: This work carried out a full stability analysis of intermetallic Heusler alloys made only of transition metals, and produced two new magnets: Co2MnTi, which displays a remarkably high TC in perfect agreement with the predictions, and Mn2PtPd, which is an antiferromagnet.
Abstract: Magnetic materials underpin modern technologies, ranging from data storage to energy conversion to contactless sensing. However, the development of a new high-performance magnet is a long and often unpredictable process, and only about two dozen magnets are featured in mainstream applications. We describe a systematic pathway to the design of novel magnetic materials, which demonstrates a high throughput and discovery speed. On the basis of an extensive electronic structure library of Heusler alloys containing 236,115 prototypical compounds, we filtered those displaying magnetic order and established whether they can be fabricated at thermodynamic equilibrium. Specifically, we carried out a full stability analysis of intermetallic Heusler alloys made only of transition metals. Among the possible 36,540 prototypes, 248 were thermodynamically stable but only 20 were magnetic. The magnetic ordering temperature, TC, was estimated by a regression calibrated on the experimental TC of about 60 known compounds. As a final validation, we attempted the synthesis of a few of the predicted compounds and produced two new magnets: Co2MnTi, which displays a remarkably high TC in perfect agreement with the predictions, and Mn2PtPd, which is an antiferromagnet. Our work paves the way for large-scale design of novel magnetic materials at potentially high speed.
Citations
More filters
Journal ArticleDOI
08 Aug 2019
TL;DR: A comprehensive overview and analysis of the most recent research in machine learning principles, algorithms, descriptors, and databases in materials science, and proposes solutions and future research paths for various challenges in computational materials science.
Abstract: One of the most exciting tools that have entered the material science toolbox in recent years is machine learning. This collection of statistical methods has already proved to be capable of considerably speeding up both fundamental and applied research. At present, we are witnessing an explosion of works that develop and apply machine learning to solid-state systems. We provide a comprehensive overview and analysis of the most recent research in this topic. As a starting point, we introduce machine learning principles, algorithms, descriptors, and databases in materials science. We continue with the description of different machine learning approaches for the discovery of stable materials and the prediction of their crystal structure. Then we discuss research in numerous quantitative structure–property relationships and various approaches for the replacement of first-principle methods by machine learning. We review how active learning and surrogate-based optimization can be applied to improve the rational design process and related examples of applications. Two major questions are always the interpretability of and the physical understanding gained from machine learning models. We consider therefore the different facets of interpretability and their importance in materials science. Finally, we propose solutions and future research paths for various challenges in computational materials science.

1,301 citations

Journal ArticleDOI
16 May 2019
TL;DR: It is shown how data-driven strategies which include data mining, screening, and machine learning techniques, employ the data generated to uncover complexities and design novel materials with enhanced properties.
Abstract: Recent advances in experimental and computational methods are increasing the quantity and complexity of generated data. This massive amount of raw data needs to be stored and interpreted in order to advance the materials science field. Identifying correlations and patterns from large amounts of complex data is being performed by machine learning (ML) algorithms for decades. Recently, the materials science community started to invest in these methodologies to extract knowledge and insights from the accumulated data. This review follows a logical sequence starting from density functional theory (DFT) as the representative instance of electronic structure methods, to the subsequent high-throughput (HT) approach, used to generate large amounts of data. Ultimately, data-driven strategies which include data mining, screening, and machine learning techniques, employ the data generated. We show how these approaches to modern computational materials science are being used to uncover complexities and design novel materials with enhanced properties. Finally, we point to the present research problems, challenges, and potential future perspectives of this new exciting field.

464 citations

Journal ArticleDOI
TL;DR: This Perspective summarizes recent technological advances in QSAR modeling but it also highlights the applicability of algorithms, modeling methods, and validation practices developed inQSAR to a wide range of research areas outside of traditional QSar boundaries including synthesis planning, nanotechnology, materials science, biomaterials, and clinical informatics.
Abstract: Prediction of chemical bioactivity and physical properties has been one of the most important applications of statistical and more recently, machine learning and artificial intelligence methods in chemical sciences. This field of research, broadly known as quantitative structure–activity relationships (QSAR) modeling, has developed many important algorithms and has found a broad range of applications in physical organic and medicinal chemistry in the past 55+ years. This Perspective summarizes recent technological advances in QSAR modeling but it also highlights the applicability of algorithms, modeling methods, and validation practices developed in QSAR to a wide range of research areas outside of traditional QSAR boundaries including synthesis planning, nanotechnology, materials science, biomaterials, and clinical informatics. As modern research methods generate rapidly increasing amounts of data, the knowledge of robust data-driven modelling methods professed within the QSAR field can become essential for scientists working both within and outside of chemical research. We hope that this contribution highlighting the generalizable components of QSAR modeling will serve to address this challenge.

383 citations

Journal ArticleDOI
18 Feb 2019
TL;DR: How methods from the information sciences enable us to accelerate the search and discovery of new materials is reviewed and active learning allows us to effectively navigate the search space iteratively to identify promising candidates for guiding experiments and computations.
Abstract: One of the main challenges in materials discovery is efficiently exploring the vast search space for targeted properties as approaches that rely on trial-and-error are impractical. We review how methods from the information sciences enable us to accelerate the search and discovery of new materials. In particular, active learning allows us to effectively navigate the search space iteratively to identify promising candidates for guiding experiments and computations. The approach relies on the use of uncertainties and making predictions from a surrogate model together with a utility function that prioritizes the decision making process on unexplored data. We discuss several utility functions and demonstrate their use in materials science applications, impacting both experimental and computational research. We summarize by indicating generalizations to multiple properties and multifidelity data, and identify challenges, future directions and opportunities in the emerging field of materials informatics.

297 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed an approach to materials prediction that uses a machine-learning interatomic potential to approximate quantum-mechanical energies and an active learning algorithm for the automatic selection of an optimal training dataset.

230 citations

References
More filters
Journal ArticleDOI
TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

146,533 citations

Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations

Journal ArticleDOI
TL;DR: Heusler compounds as discussed by the authors are a remarkable class of intermetallic materials with 1:1:1 or 2:1-1 composition comprising more than 1500 members, and their properties can easily be predicted by the valence electron count.

1,675 citations

Journal ArticleDOI
TL;DR: A current snapshot of high-throughput computational materials design is provided, and the challenges and opportunities that lie ahead are highlighted.
Abstract: High-throughput computational materials design is an emerging area of materials science. By combining advanced thermodynamic and electronic-structure methods with intelligent data mining and database construction, and exploiting the power of current supercomputer architectures, scientists generate, manage and analyse enormous data repositories for the discovery of novel materials. In this Review we provide a current snapshot of this rapidly evolving field, and highlight the challenges and opportunities that lie ahead.

1,568 citations


"Accelerated discovery of new magnet..." refers methods in this paper

  • ...For this reason, we take a completely different approach to the discovery process anddemonstrate that a combinationof advanced electronic structure theory andmassive database creation and search, the high-throughput computational materials design approach (7), can provide a powerful tool for finding new magnetic materials....

    [...]

  • ...We then calculate the entropic temperature, TS (7, 16, 22)....

    [...]

Book
01 Jan 2007
TL;DR: This is the first introductory guide to the CALPHAD method, providing a theoretical and practical approach, and the reader will be confident in assessing, optimizing and validating complex thermodynamic systems alongside database construction and manipulation.
Abstract: Phase diagrams are used in materials research and engineering to understand the interrelationship between composition, microstructure and process conditions. In complex systems, computational methods such as CALPHAD are employed to model thermodynamic properties for each phase and simulate multicomponent phase behavior. Written by recognized experts in the field, this is the first introductory guide to the CALPHAD method, providing a theoretical and practical approach. Building on core thermodynamic principles, this book applies crystallography, first principles methods and experimental data to computational phase behavior modeling using the CALPHAD method. With a chapter dedicated to creating thermodynamic databases, the reader will be confident in assessing, optimizing and validating complex thermodynamic systems alongside database construction and manipulation. Several case studies put the methods into a practical context, making this suitable for use on advanced materials design and engineering courses and an invaluable reference to those using thermodynamic data in their research or simulations.

1,052 citations


"Accelerated discovery of new magnet..." refers background in this paper

  • ...If the electronic structure and the enthalpy of formation of the relevant binaries are available, then one can construct the convex hull diagram for the associated ternary compounds (17)....

    [...]