scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications

01 Feb 2012-Sensors (Questex Media Group Inc.)-Vol. 12, Iss: 2, pp 1437-1454
TL;DR: The calibration of the Kinect sensor is discussed, and an analysis of the accuracy and resolution of its depth data is provided, based on a mathematical model of depth measurement from disparity.
Abstract: Consumer-grade range cameras such as the Kinect sensor have the potential to be used in mapping applications where accuracy requirements are less strict. To realize this potential insight into the geometric quality of the data acquired by the sensor is essential. In this paper we discuss the calibration of the Kinect sensor, and provide an analysis of the accuracy and resolution of its depth data. Based on a mathematical model of depth measurement from disparity a theoretical error analysis is presented, which provides an insight into the factors influencing the accuracy of the data. Experimental results show that the random error of depth measurement increases with increasing distance to the sensor, and ranges from a few millimeters up to about 4 cm at the maximum range of the sensor. The quality of the data is also found to be influenced by the low resolution of the depth measurements.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of recent Kinect-based computer vision algorithms and applications covering topics including preprocessing, object tracking and recognition, human activity analysis, hand gesture analysis, and indoor 3-D mapping.
Abstract: With the invention of the low-cost Microsoft Kinect sensor, high-resolution depth and visual (RGB) sensing has become available for widespread use. The complementary nature of the depth and visual information provided by the Kinect sensor opens up new opportunities to solve fundamental problems in computer vision. This paper presents a comprehensive review of recent Kinect-based computer vision algorithms and applications. The reviewed approaches are classified according to the type of vision problems that can be addressed or enhanced by means of the Kinect sensor. The covered topics include preprocessing, object tracking and recognition, human activity analysis, hand gesture analysis, and indoor 3-D mapping. For each category of methods, we outline their main algorithmic contributions and summarize their advantages/differences compared to their RGB counterparts. Finally, we give an overview of the challenges in this field and future research trends. This paper is expected to serve as a tutorial and source of references for Kinect-based computer vision researchers.

1,513 citations


Cites background from "Accuracy and Resolution of Kinect D..."

  • ...[13] provide an insight into the geometric quality of Kinect depth data based on analyzing the accuracy and resolution of the depth signal....

    [...]

Journal ArticleDOI

[...]

TL;DR: A method able to both coarse and fine register sets of 3D points provided by low-cost depth-sensing cameras into a common coordinate system, able to overcome the noisy data problem by means of using a model-based solution of multiplane registration.
Abstract: A novel method, µ-MAR, able to both coarse and fine register 3D point sets.The method overcomes noisy data problem using model based planes registration.µ-MAR iteratively registers a 3D markers around the object to be reconstructed.It uses a variant of the multi-view registration with subsets of data.Transformations to register the markers allow to reconstruct the object accurately. Many applications including object reconstruction, robot guidance, and. scene mapping require the registration of multiple views from a scene to generate a complete geometric and appearance model of it. In real situations, transformations between views are unknown and it is necessary to apply expert inference to estimate them. In the last few years, the emergence of low-cost depth-sensing cameras has strengthened the research on this topic, motivating a plethora of new applications. Although they have enough resolution and accuracy for many applications, some situations may not be solved with general state-of-the-art registration methods due to the signal-to-noise ratio (SNR) and the resolution of the data provided. The problem of working with low SNR data, in general terms, may appear in any 3D system, then it is necessary to propose novel solutions in this aspect. In this paper, we propose a method, µ-MAR, able to both coarse and fine register sets of 3D points provided by low-cost depth-sensing cameras, despite it is not restricted to these sensors, into a common coordinate system. The method is able to overcome the noisy data problem by means of using a model-based solution of multiplane registration. Specifically, it iteratively registers 3D markers composed by multiple planes extracted from points of multiple views of the scene. As the markers and the object of interest are static in the scenario, the transformations obtained for the markers are applied to the object in order to reconstruct it. Experiments have been performed using synthetic and real data. The synthetic data allows a qualitative and quantitative evaluation by means of visual inspection and Hausdorff distance respectively. The real data experiments show the performance of the proposal using data acquired by a Primesense Carmine RGB-D sensor. The method has been compared to several state-of-the-art methods. The results show the good performance of the µ-MAR to register objects with high accuracy in presence of noisy data outperforming the existing methods.

998 citations

Journal ArticleDOI
14 May 2013-Sensors
TL;DR: Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.
Abstract: The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy However, up to this point its capabilities in real environments have not been analyzed Therefore, this paper presents a first study of a Leap Motion Controller The main focus of attention is on the evaluation of the accuracy and repeatability For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 02 mm Thereby, a deviation between a desired 3D position and the average measured positions below 02mmhas been obtained for static setups and of 12mmfor dynamic setups Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction

863 citations


Cites background or methods from "Accuracy and Resolution of Kinect D..."

  • ...Applications benefit especially from the increasing accuracy and robustness of 3D sensors [1] and a drop in prices....

    [...]

  • ...A high precision laser scanner is also used by Khoshelam [1] in order to compare the deviations of captured reference objects with the point cloud generated with the structured light based Kinect camera....

    [...]

Journal ArticleDOI
TL;DR: A novel mapping system that robustly generates highly accurate 3-D maps using an RGB-D camera that applies to small domestic robots such as vacuum cleaners, as well as flying robotssuch as quadrocopters.
Abstract: In this paper, we present a novel mapping system that robustly generates highly accurate 3-D maps using an RGB-D camera. Our approach requires no further sensors or odometry. With the availability of low-cost and light-weight RGB-D sensors such as the Microsoft Kinect, our approach applies to small domestic robots such as vacuum cleaners, as well as flying robots such as quadrocopters. Furthermore, our system can also be used for free-hand reconstruction of detailed 3-D models. In addition to the system itself, we present a thorough experimental evaluation on a publicly available benchmark dataset. We analyze and discuss the influence of several parameters such as the choice of the feature descriptor, the number of visual features, and validation methods. The results of the experiments demonstrate that our system can robustly deal with challenging scenarios such as fast camera motions and feature-poor environments while being fast enough for online operation. Our system is fully available as open source and has already been widely adopted by the robotics community.

781 citations


Cites methods from "Accuracy and Resolution of Kinect D..."

  • ...Our method exploits the availability of structured dense depth data, in particular, the contained dense free-space information....

    [...]

Journal ArticleDOI
11 Jul 2016
TL;DR: It is demonstrated that Soli can be used for robust gesture recognition and can track gestures with sub-millimeter accuracy, running at over 10,000 frames per second on embedded hardware.
Abstract: This paper presents Soli, a new, robust, high-resolution, low-power, miniature gesture sensing technology for human-computer interaction based on millimeter-wave radar. We describe a new approach to developing a radar-based sensor optimized for human-computer interaction, building the sensor architecture from the ground up with the inclusion of radar design principles, high temporal resolution gesture tracking, a hardware abstraction layer (HAL), a solid-state radar chip and system architecture, interaction models and gesture vocabularies, and gesture recognition. We demonstrate that Soli can be used for robust gesture recognition and can track gestures with sub-millimeter accuracy, running at over 10,000 frames per second on embedded hardware.

667 citations

References
More filters
Journal ArticleDOI
TL;DR: New results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form that provide the basis for an automatic system that can solve the Location Determination Problem under difficult viewing.
Abstract: A new paradigm, Random Sample Consensus (RANSAC), for fitting a model to experimental data is introduced. RANSAC is capable of interpreting/smoothing data containing a significant percentage of gross errors, and is thus ideally suited for applications in automated image analysis where interpretation is based on the data provided by error-prone feature detectors. A major portion of this paper describes the application of RANSAC to the Location Determination Problem (LDP): Given an image depicting a set of landmarks with known locations, determine that point in space from which the image was obtained. In response to a RANSAC requirement, new results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form. These results provide the basis for an automatic system that can solve the LDP under difficult viewing

23,396 citations


"Accuracy and Resolution of Kinect D..." refers methods in this paper

  • ...The RANSAC plane fitting method was used to avoid the influence of outliers....

    [...]

  • ...Then, a robust plane fitting using RANSAC [36,37] was applied to obtain plane parameters and the inlying points....

    [...]

Journal ArticleDOI
Paul J. Besl1, H.D. McKay1
TL;DR: In this paper, the authors describe a general-purpose representation-independent method for the accurate and computationally efficient registration of 3D shapes including free-form curves and surfaces, based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point.
Abstract: The authors describe a general-purpose, representation-independent method for the accurate and computationally efficient registration of 3-D shapes including free-form curves and surfaces. The method handles the full six degrees of freedom and is based on the iterative closest point (ICP) algorithm, which requires only a procedure to find the closest point on a geometric entity to a given point. The ICP algorithm always converges monotonically to the nearest local minimum of a mean-square distance metric, and the rate of convergence is rapid during the first few iterations. Therefore, given an adequate set of initial rotations and translations for a particular class of objects with a certain level of 'shape complexity', one can globally minimize the mean-square distance metric over all six degrees of freedom by testing each initial registration. One important application of this method is to register sensed data from unfixtured rigid objects with an ideal geometric model, prior to shape inspection. Experimental results show the capabilities of the registration algorithm on point sets, curves, and surfaces. >

17,598 citations

Proceedings ArticleDOI
01 May 2001
TL;DR: An implementation is demonstrated that is able to align two range images in a few tens of milliseconds, assuming a good initial guess, and has potential application to real-time 3D model acquisition and model-based tracking.
Abstract: The ICP (Iterative Closest Point) algorithm is widely used for geometric alignment of three-dimensional models when an initial estimate of the relative pose is known. Many variants of ICP have been proposed, affecting all phases of the algorithm from the selection and matching of points to the minimization strategy. We enumerate and classify many of these variants, and evaluate their effect on the speed with which the correct alignment is reached. In order to improve convergence for nearly-flat meshes with small features, such as inscribed surfaces, we introduce a new variant based on uniform sampling of the space of normals. We conclude by proposing a combination of ICP variants optimized for high speed. We demonstrate an implementation that is able to align two range images in a few tens of milliseconds, assuming a good initial guess. This capability has potential application to real-time 3D model acquisition and model-based tracking.

4,059 citations


"Accuracy and Resolution of Kinect D..." refers methods in this paper

  • ...The characterization of random errors is important and useful in further processing of the depth data, for example in weighting the point pairs or planes in the registration algorithm [17,18]....

    [...]

Proceedings ArticleDOI
16 Oct 2011
TL;DR: Novel extensions to the core GPU pipeline demonstrate object segmentation and user interaction directly in front of the sensor, without degrading camera tracking or reconstruction, to enable real-time multi-touch interactions anywhere.
Abstract: KinectFusion enables a user holding and moving a standard Kinect camera to rapidly create detailed 3D reconstructions of an indoor scene. Only the depth data from Kinect is used to track the 3D pose of the sensor and reconstruct, geometrically precise, 3D models of the physical scene in real-time. The capabilities of KinectFusion, as well as the novel GPU-based pipeline are described in full. Uses of the core system for low-cost handheld scanning, and geometry-aware augmented reality and physics-based interactions are shown. Novel extensions to the core GPU pipeline demonstrate object segmentation and user interaction directly in front of the sensor, without degrading camera tracking or reconstruction. These extensions are used to enable real-time multi-touch interactions anywhere, allowing any planar or non-planar reconstructed physical surface to be appropriated for touch.

2,373 citations


"Accuracy and Resolution of Kinect D..." refers background in this paper

  • ...Kinect have attracted the attention of researchers from other fields [3–11] including mapping and 3D modeling [12–15]....

    [...]

Book ChapterDOI
01 Jan 2014
TL;DR: This paper presents RGB-D Mapping, a full 3D mapping system that utilizes a novel joint optimization algorithm combining visual features and shape-based alignment to achieve globally consistent maps.
Abstract: RGB-D cameras are novel sensing systems that capture RGB images along with per-pixel depth information. In this paper we investigate how such cameras can be used in the context of robotics, specifically for building dense 3D maps of indoor environments. Such maps have applications in robot navigation, manipulation, semantic mapping, and telepresence. We present RGB-D Mapping, a full 3D mapping system that utilizes a novel joint optimization algorithm combining visual features and shape-based alignment. Visual and depth information are also combined for view-based loop closure detection, followed by pose optimization to achieve globally consistent maps.We evaluate RGB-D Mapping on two large indoor environments, and show that it effectively combines the visual and shape information available from RGB-D cameras.

971 citations