scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized by a new precipitation route

TL;DR: The results, particularly those from infrared spectroscopy, raise serious reservations about the phase purity of previously prepared and biologically evaluated SiHA powders, pellets and scaffolds in the literature.
About: This article is published in Acta Biomaterialia.The article was published on 2013-06-01 and is currently open access. It has received 88 citations till now. The article focuses on the topics: Infrared spectroscopy & Fourier transform infrared spectroscopy.

Summary (1 min read)

1. Introduction

  • In order to correctly describe the physical, chemical and biological properties of SiHAs and to compare them to routinely implanted HA and β-TCP, well-characterized pure SiHAs powders first need to be prepared.
  • Therefore, this work was devoted to the development of a new route to synthesize monophasic SiHA powders with controlled stoichiometry.
  • To this purpose, a solution of soluble silicate was first prepared from TEOS via a sol-gel route, and then accurate powder analysis was carried out by means of ICP/AES, Xray powder diffraction, Rietveld refinement, high resolution electron transmission microscopy (HR-TEM) with energy dispersive spectroscopy (EDS) as well as infrared (FT-IR/ATR) and solid-state NMR spectroscopy.
  • Two pH levels of precipitation were studied, as well as six Si/P molar ratios.

2.1 Powder synthesis

  • The as-synthesized powders were heated under air using an alumina crucible.
  • The heating and cooling rate was fixed at 4°C min -1 .

2.2.1 X-ray powder diffraction and Rietveld refinement

  • Crystalline phases were identified by means of a Siemens D5000 θ/2θ X-ray diffractometer.
  • The evolution of the crystallinity of the samples after calcination at 1000°C for 15 h was evaluated by means of the full width at half maximum (FWHM) of the (211) peak at 2θ=31.8°, as it had the highest intensity and minimal overlap with neighboring peaks.

2.2.4 Electron microscopy (HR-TEM, SAED and EDX)

  • Gold was then distributed as crystallized nano-domains which were used as a reference in the selected area electron diffraction (SAED) patterns to calculate as precisely as possible the lattice parameters.
  • The SAED patterns obtained from regions with or without gold on the HA part were the same.

3.2.4 Electron microscopy

  • The results are the average of about ten intervals per pattern.
  • Moreover, other experimental patterns for different zone axes (not shown here) were obtained and compared to theoretical electron diffraction patterns calculated by means of the Java Electron Microscopy Simulation (JEMS) software [87] .
  • The results indicate that the experimental and simulated patterns are perfectly superimposed for 0.734 ≥ c/a ≥ 0.729.

Did you find this useful? Give us your feedback

Citations
More filters
Journal ArticleDOI
TL;DR: This review discusses the current data obtained from original research in biochemistry and biomaterials science supporting the role of silicon in bone, comparing both the biological function of the element and analysing the evolution of silicon-containing biommaterials.

150 citations

Book ChapterDOI
01 Jan 2015

100 citations

Journal ArticleDOI
TL;DR: The present review is mainly focused on both the capability of HAp nanoparticles to encapsulate diverse compounds as well as the preparation methods of scaffolds incorporating HAp.
Abstract: Composites of hydroxyapatite (HAp) are widely employed in biomedical applications due to their biocompatibility, bioactivity and osteoconductivity properties. In fact, the development of industrially scalable hybrids at low cost and high efficiency has a great impact, for example, on bone tissue engineering applications and even as drug delivery systems. New nanocomposites constituted by HAp nanoparticles and synthetic or natural polymers with biodegradable and biocompatible characteristics have constantly been developed and extensive works have been published concerning their applications. The present review is mainly focused on both the capability of HAp nanoparticles to encapsulate diverse compounds as well as the preparation methods of scaffolds incorporating HAp. Attention has also been paid to the recent developments on antimicrobial scaffolds, bioactive membranes, magnetic scaffolds, in vivo imaging systems, hydrogels and coatings that made use of HAp nanoparticles.

83 citations

Journal ArticleDOI
TL;DR: This review focuses on state-of-the-art and the current advances in the development of 3D culture systems for bone biology research, and details main characteristics and challenges associated with its three main components, that is, scaffold, cells, and perfusion bioreactor systems.
Abstract: Most of our knowledge of bone cell physiology is derived from experiments carried out in vitro on polystyrene substrates However, these traditional monolayer cell cultures do not reproduce the complex and dynamic 3-dimensional (3D) environment experienced by cells in vivo Thus, there is a growing interest in the use of 3D culture systems as tools for understanding bone biology These in vitro engineered systems, less complex than in vivo models, should ultimately recapitulate and control the main biophysical, biochemical and biomechanical cues that define the in vivo bone environment, while allowing their monitoring This review focuses on state of the art and the current advances in the development of 3D culture systems for bone biology research It describes more specifically advantages related to the use of such systems, and details main characteristics and challenges associated with its three main components, ie scaffold, cells and perfusion bioreactor systems Finally, future challenges for non-invasive imaging technologies are addressed

80 citations

Journal ArticleDOI
01 Jun 2021
TL;DR: In this paper, a review summarises recent and relevant studies on cationic and anionic substitutions in the HAp lattice that are commonly found in the human body.
Abstract: Biological apatites are characterised by various ionic substitutions within the HAp lattice that are crucial for bone metabolism. The introduction of key role elements within synthetic calcium phosphates (CaP), mainly hydroxyapatite (HAp), can increase osteogenesis and enhance bone regeneration process. The lattice structure of HAp enables cationic and anionic substitutions leading to the enhanced biological performance of synthetic bone graft materials. This review summarises recent and relevant studies on cationic and anionic substitutions in the HAp lattice that are commonly found in the human body. Furthermore, co-substituted HAp obtained from synthetic and biological precursors, along with their influence on the bone regeneration process, has been discussed. Finally, future perspectives for the use of substituted HAp have been presented.

77 citations

References
More filters
Journal ArticleDOI
TL;DR: Materials have two characteristic features: a phase composition which is a mixture of calcium hydroxyapatite and a silicon stabilized tricalcium phosphate, and a microporous morphology based on inter-connected particles (0.2-1 microm in diameter).

159 citations


"Accurate characterization of pure s..." refers methods in this paper

  • ...107 Several methods are used to prepare Si-substituted hydroxyapatites (SiHAs), such as 108 the sol-gel route [48], resuspension processes [20, 33, 34, 63-66], solid state reactions [10, 109 67], hydrothermal techniques [17, 68, 69], mechanoc hemical methods [70], magnetron 110 sputtering [14], pulsed laser deposition [51, 71], electrophoretic deposition [72] and 111 precipitation from aqueous solutions....

    [...]

Journal ArticleDOI
TL;DR: In this article, a silicon-substituted hydroxyapatite (Si-HA) was prepared successfully by hydrothermal method and the crystalline phase, microstructure, chemical composition, morphology and thermal stability of Si-HA were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC).

152 citations

Journal ArticleDOI
TL;DR: It has been shown that identification of rings is possible after precise analysis of the spectra preceded by mathematical decomposition in SiO2 structures where silicooxygen rings are interconnected.

152 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the effects of uniaxial stress on the 517, 1136 and 1203 cm$-1}$ bands of Si$\{2}$O.
Abstract: Previous work on oxygen in silicon has shown that oxygen dissolves interstitially in silicon forming a complex which may be approximately described as Si$\_{2}$O. Absorption bands of Si: O occur at 517, 1136 and 1203 cm$^{-1}$ and these have been assigned by earlier authors to the $\upsilon \_{2}$ (symmetric bending), $\upsilon \_{3}$ (antisymmetric stretch) and $\upsilon \_{1}$ (symmetric stretch) normal modes of vibration of Si$\_{2}$O. The present investigation confirms the $\upsilon \_{3}$ origin of the 1136 cm$^{-1}$ band (the well known 9$\mu $m band) but we disagree with the earlier assignments of the 517 and 1136 cm$^{-1}$ bands. The results reported here are relevant to organic siloxanes. We have extended the investigation of Si: O into the far infrared and we find sharp absorption lines at 29.3, 37.8, 43.3 and 49.0 cm$^{-1}$ which we have assigned to the $\upsilon \_{2}$ mode of Si$\_{2}$O. The isotope shift due to $^{18}$O has been observed in the far infrared spectrum. Effects of uniaxial stress on the 29.3 cm$^{-1}$ line have been investigated and are found to be consistent with the assignment to the $\upsilon \_{2}$ mode. The main features of the far infrared spectrum are accounted for with a simple anharmonic potential which ignores coupling of the Si$\_{2}$O to the crystal lattice. We have investigated effects of uniaxial stress on the 517, 1136 and 1203 cm$^{-1}$ bands of Si$\_{2}$O. Our stress results for the 1136 cm$^{-1}$ band are consistent with the earlier $\upsilon \_{3}$ assignment. Using our normal mode description, we conclude that the 1203 cm$^{-1}$ band is a combination band involving $\upsilon \_{3}$ and $\upsilon \_{2}$ excitations. We have not been able to give a clear cut assignment to the 517 cm$^{-1}$ band, but we suggest that $\upsilon _{1}$ type excitation may be involved. The appendix describes the stress splitting of the 836 cm$^{-1}$ band of the silicon A centre in electron irradiated Si: O and our results confirm an earlier model for this centre. In all cases investigated here, the stress splittings arise from raising the orientational degeneracy of the oxygen complex.

150 citations

Journal ArticleDOI
TL;DR: The results indicate that human osteoblasts are affected by the presence of silicon in the HA substrate and that the timing of these effects may be dependent upon the level of silicon substitution.
Abstract: Human osteoblasts were cultured on hydroxyapatite (HA), 0.8 wt % silicon substituted hydroxyapatite (Si-HA) and 1.5 wt % Si-HA discs. The influence of these substrates on cell behaviour in vitro was assessed by measuring total protein in the cell lysate and the production of several phenotypic markers: collagen type I (COL I), alkaline phosphatase (ALP), osteocalcin (OC), and the formation of bone mineral. After 7 days, beta-glycerophosphate and physiological levels of hydrocortisone were added to the culture medium to stimulate cell differentiation and mineral production. There was a significantly higher production of ALP on 1.5 wt % Si-HA at day 7 following which, the addition of hydrocortisone promoted the differentiation of cells on the other two substrates. Hydrocortisone addition also decreased the production of OC. During the period, when hydrocortisone was present, no significant difference in behavior was seen between cells on Si-HA and HA; however, following removal of hydrocortisone, cells responded to 0.8 wt % Si-HA with a significant increase in protein production. Using fluorescence microscopy, nodular structures labeled with tetracycline were observed on the surface of all substrates after 21 days. These structures were deposited on areas of high cell density but were not related to the presence or level of silicon in the substrate. These results indicate that human osteoblasts are affected by the presence of silicon in the HA substrate and that the timing of these effects may be dependent upon the level of silicon substitution.

145 citations


"Accurate characterization of pure s..." refers background in this paper

  • ...28 mol Si molSiHA ) is 71 optimal to induce the development of important bioa ctivity [22-24]....

    [...]

Frequently Asked Questions (1)
Q1. What are the contributions mentioned in the paper "Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized by a new precipitation route" ?

HAL this paper is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not.