scispace - formally typeset
Search or ask a question
Posted Content

Accurate Image Super-Resolution Using Very Deep Convolutional Networks

TL;DR: This work presents a highly accurate single-image superresolution (SR) method using a very deep convolutional network inspired by VGG-net used for ImageNet classification and uses extremely high learning rates enabled by adjustable gradient clipping.
Abstract: We present a highly accurate single-image super-resolution (SR) method. Our method uses a very deep convolutional network inspired by VGG-net used for ImageNet classification \cite{simonyan2015very}. We find increasing our network depth shows a significant improvement in accuracy. Our final model uses 20 weight layers. By cascading small filters many times in a deep network structure, contextual information over large image regions is exploited in an efficient way. With very deep networks, however, convergence speed becomes a critical issue during training. We propose a simple yet effective training procedure. We learn residuals only and use extremely high learning rates ($10^4$ times higher than SRCNN \cite{dong2015image}) enabled by adjustable gradient clipping. Our proposed method performs better than existing methods in accuracy and visual improvements in our results are easily noticeable.
Citations
More filters
Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper proposed a feed-forward denoising convolutional neural networks (DnCNNs) to handle Gaussian denobling with unknown noise level.
Abstract: The discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating the construction of feed-forward denoising convolutional neural networks (DnCNNs) to embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising. Specifically, residual learning and batch normalization are utilized to speed up the training process as well as boost the denoising performance. Different from the existing discriminative denoising models which usually train a specific model for additive white Gaussian noise at a certain noise level, our DnCNN model is able to handle Gaussian denoising with unknown noise level (i.e., blind Gaussian denoising). With the residual learning strategy, DnCNN implicitly removes the latent clean image in the hidden layers. This property motivates us to train a single DnCNN model to tackle with several general image denoising tasks, such as Gaussian denoising, single image super-resolution, and JPEG image deblocking. Our extensive experiments demonstrate that our DnCNN model can not only exhibit high effectiveness in several general image denoising tasks, but also be efficiently implemented by benefiting from GPU computing.

5,902 citations

Proceedings ArticleDOI
21 Jul 2017
TL;DR: It is concluded that the NTIRE 2017 challenge pushes the state-of-the-art in single-image super-resolution, reaching the best results to date on the popular Set5, Set14, B100, Urban100 datasets and on the authors' newly proposed DIV2K.
Abstract: This paper introduces a novel large dataset for example-based single image super-resolution and studies the state-of-the-art as emerged from the NTIRE 2017 challenge. The challenge is the first challenge of its kind, with 6 competitions, hundreds of participants and tens of proposed solutions. Our newly collected DIVerse 2K resolution image dataset (DIV2K) was employed by the challenge. In our study we compare the solutions from the challenge to a set of representative methods from the literature and evaluate them using diverse measures on our proposed DIV2K dataset. Moreover, we conduct a number of experiments and draw conclusions on several topics of interest. We conclude that the NTIRE 2017 challenge pushes the state-of-the-art in single-image super-resolution, reaching the best results to date on the popular Set5, Set14, B100, Urban100 datasets and on our newly proposed DIV2K.

2,388 citations


Cites background or methods from "Accurate Image Super-Resolution Usi..."

  • ...SRResNet is a ResNet architecture [18] based CNN model proposed by Ledig et al. [26] which goes deeper than VDSR for better performance....

    [...]

  • ...They propose a diversity of ideas and design details and generally build upon and go beyond the very recent proposed SR works [10, 49, 21, 26]....

    [...]

  • ...The performance of the top methods have continuously improved [54, 48, 21, 26] as the field has reached maturity....

    [...]

  • ...Most of the recent SR works adopted a couple of datasets like the 91 train images 23 24 25 26 27 28 29 30 31 32 33 34 35 bicubic A+ ACCV14 [48] SelfEx CVPR15 [19] ARFL+ CVPR15 [39] PSyCo CVPR16 [33] IA CVPR16 [49] WSDSR arxiv17 [7] SRCNN PAMI16 [10] CSCN-MV ICCV16 [51] ESPCN CVPR16 [42] FSRCNN ECCV16 [11] VDSR CVPR16 [21] DRCN CVPR16 [22] DRRN CVPR17 [44] SRResNet CVPR17 [26] Lab402 CVPRW17 [46] HelloSR CVPRW17 [46] SNU CVPRW17 [46]...

    [...]

  • ...VDSR is a VGG16 architecture [43] based CNN model proposed by Kim et al. [21]....

    [...]

Book ChapterDOI
08 Oct 2016
TL;DR: Zhang et al. as mentioned in this paper proposed a compact hourglass-shape CNN structure for faster and better image super-resolution, which can achieve real-time performance on a generic CPU while still maintaining good performance.
Abstract: As a successful deep model applied in image super-resolution (SR), the Super-Resolution Convolutional Neural Network (SRCNN) [1, 2] has demonstrated superior performance to the previous hand-crafted models either in speed and restoration quality. However, the high computational cost still hinders it from practical usage that demands real-time performance (24 fps). In this paper, we aim at accelerating the current SRCNN, and propose a compact hourglass-shape CNN structure for faster and better SR. We re-design the SRCNN structure mainly in three aspects. First, we introduce a deconvolution layer at the end of the network, then the mapping is learned directly from the original low-resolution image (without interpolation) to the high-resolution one. Second, we reformulate the mapping layer by shrinking the input feature dimension before mapping and expanding back afterwards. Third, we adopt smaller filter sizes but more mapping layers. The proposed model achieves a speed up of more than 40 times with even superior restoration quality. Further, we present the parameter settings that can achieve real-time performance on a generic CPU while still maintaining good performance. A corresponding transfer strategy is also proposed for fast training and testing across different upscaling factors.

2,090 citations

Posted Content
Yulun Zhang1, Kunpeng Li1, Kai Li1, Lichen Wang1, Bineng Zhong1, Yun Fu1 
TL;DR: This work proposes a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections, and proposes a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels.
Abstract: Convolutional neural network (CNN) depth is of crucial importance for image super-resolution (SR). However, we observe that deeper networks for image SR are more difficult to train. The low-resolution inputs and features contain abundant low-frequency information, which is treated equally across channels, hence hindering the representational ability of CNNs. To solve these problems, we propose the very deep residual channel attention networks (RCAN). Specifically, we propose a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections. Each residual group contains some residual blocks with short skip connections. Meanwhile, RIR allows abundant low-frequency information to be bypassed through multiple skip connections, making the main network focus on learning high-frequency information. Furthermore, we propose a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels. Extensive experiments show that our RCAN achieves better accuracy and visual improvements against state-of-the-art methods.

2,025 citations


Cites background or methods from "Accurate Image Super-Resolution Usi..."

  • ...Manga109 (4×): YumeiroCooking HR Bicubic SRCNN [1] FSRCNN [2] VDSR [4] PSNR/SSIM 24....

    [...]

  • ...proposed VDSR [4] and DRCN [19] with 20 layers and achieved significant improvement in accuracy....

    [...]

  • ...VDSR [4] IRCNN [15] SRMDNF [11] RDN [17] RCAN 22....

    [...]

  • ...Urban100 (8×): img 040 HR Bicubic SRCNN [1] SCN [3] VDSR [4] PSNR/SSIM 15....

    [...]

  • ...HR Bicubic SRCNN [1] FSRCNN [2] SCN [3] VDSR [4] DRRN [5]...

    [...]

Proceedings ArticleDOI
21 Jul 2017
TL;DR: This paper proposes a very deep CNN model (up to 52 convolutional layers) named Deep Recursive Residual Network (DRRN) that strives for deep yet concise networks, and recursive learning is used to control the model parameters while increasing the depth.
Abstract: Recently, Convolutional Neural Network (CNN) based models have achieved great success in Single Image Super-Resolution (SISR). Owing to the strength of deep networks, these CNN models learn an effective nonlinear mapping from the low-resolution input image to the high-resolution target image, at the cost of requiring enormous parameters. This paper proposes a very deep CNN model (up to 52 convolutional layers) named Deep Recursive Residual Network (DRRN) that strives for deep yet concise networks. Specifically, residual learning is adopted, both in global and local manners, to mitigate the difficulty of training very deep networks, recursive learning is used to control the model parameters while increasing the depth. Extensive benchmark evaluation shows that DRRN significantly outperforms state of the art in SISR, while utilizing far fewer parameters. Code is available at https://github.com/tyshiwo/DRRN_CVPR17.

1,872 citations

References
More filters
Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Posted Content
TL;DR: This work proposes a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit and derives a robust initialization method that particularly considers the rectifier nonlinearities.
Abstract: Rectified activation units (rectifiers) are essential for state-of-the-art neural networks. In this work, we study rectifier neural networks for image classification from two aspects. First, we propose a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit. PReLU improves model fitting with nearly zero extra computational cost and little overfitting risk. Second, we derive a robust initialization method that particularly considers the rectifier nonlinearities. This method enables us to train extremely deep rectified models directly from scratch and to investigate deeper or wider network architectures. Based on our PReLU networks (PReLU-nets), we achieve 4.94% top-5 test error on the ImageNet 2012 classification dataset. This is a 26% relative improvement over the ILSVRC 2014 winner (GoogLeNet, 6.66%). To our knowledge, our result is the first to surpass human-level performance (5.1%, Russakovsky et al.) on this visual recognition challenge.

11,866 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: In this paper, a Parametric Rectified Linear Unit (PReLU) was proposed to improve model fitting with nearly zero extra computational cost and little overfitting risk, which achieved a 4.94% top-5 test error on ImageNet 2012 classification dataset.
Abstract: Rectified activation units (rectifiers) are essential for state-of-the-art neural networks. In this work, we study rectifier neural networks for image classification from two aspects. First, we propose a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit. PReLU improves model fitting with nearly zero extra computational cost and little overfitting risk. Second, we derive a robust initialization method that particularly considers the rectifier nonlinearities. This method enables us to train extremely deep rectified models directly from scratch and to investigate deeper or wider network architectures. Based on the learnable activation and advanced initialization, we achieve 4.94% top-5 test error on the ImageNet 2012 classification dataset. This is a 26% relative improvement over the ILSVRC 2014 winner (GoogLeNet, 6.66% [33]). To our knowledge, our result is the first to surpass the reported human-level performance (5.1%, [26]) on this dataset.

11,732 citations