scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Accurate nucleon-nucleon potential with charge-independence breaking

01 Jan 1995-Physical Review C (American Physical Society)-Vol. 51, Iss: 1, pp 38-51
TL;DR: The authors present a new high-quality nucleon-nucleon potential with explicit charge dependence and charge asymmetry, which they designate Argonne {upsilon}{sub 18}.
Abstract: The authors present a new high-quality nucleon-nucleon potential with explicit charge dependence and charge asymmetry, which they designate Argonne {upsilon}{sub 18}. The model has a charge-independent part with fourteen operator components that is an updated version of the Argonne {upsilon}{sub 14} potential. Three additional charge-dependent and one charge-asymmetric operators are added, along with a complete electromagnetic interaction. The potential has been fit directly to the Nijmegen pp and np scattering data base, low-energy nn scattering parameters, and deuteron binding energy. With 40 adjustable parameters it gives a {chi}{sup 2} per datum of 1.09 for 4,301 pp and np data in the range 0--350 MeV.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the nuclear forces can be derived using effective chiral Lagrangians consistent with the symmetries of QCD, and the status of the calculations for two and three nucleon forces and their applications in few-nucleon systems are reviewed.
Abstract: Nuclear forces can be systematically derived using effective chiral Lagrangians consistent with the symmetries of QCD. I review the status of the calculations for two- and three-nucleon forces and their applications in few-nucleon systems. I also address issues like the quark mass dependence of the nuclear forces and resonance saturation for four-nucleon operators.

1,455 citations

Journal ArticleDOI
TL;DR: In this paper, the first nucleon-nucleon potential at the fourth order of chiral perturbation theory was presented, and the accuracy for the reproduction of the nucleon nucleon $(NN)$ data below $290\text{\ensuremath{-}}\text{MeV}$ lab energy is comparable to the one of phenomenological high-precision potentials.
Abstract: We present the first nucleon-nucleon potential at next-to-next-to-next-to-leading order (fourth order) of chiral perturbation theory. Charge dependence is included up to next-to-leading order of the isospin-violation scheme. The accuracy for the reproduction of the nucleon-nucleon $(NN)$ data below $290\text{\ensuremath{-}}\text{MeV}$ lab energy is comparable to the one of phenomenological high-precision potentials. Since $NN$ potentials of order three and less are known to be deficient in quantitative terms, the present work shows that the fourth order is necessary and sufficient for a $NN$ potential reliable up to $290\phantom{\rule{0.3em}{0ex}}\text{MeV}$. The new potential provides a promising starting point for exact few-body calculations and microscopic nuclear structure theory (including chiral many-body forces derived on the same footing).

1,151 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the major progress achieved during the last decade in isospin physics with heavy ion reactions and discuss future challenges to the most important issues in this field.

940 citations

Journal ArticleDOI
TL;DR: In this article, the Lanczos tridiagonal construction has been used to diagonalize matrices in determinantal spaces of dimensionality up to 10^9 using the Shell Model.
Abstract: The last decade has witnessed both quantitative and qualitative progresses in Shell Model studies, which have resulted in remarkable gains in our understanding of the structure of the nucleus. Indeed, it is now possible to diagonalize matrices in determinantal spaces of dimensionality up to 10^9 using the Lanczos tridiagonal construction, whose formal and numerical aspects we will analyze. Besides, many new approximation methods have been developed in order to overcome the dimensionality limitations. Furthermore, new effective nucleon-nucleon interactions have been constructed that contain both two and three-body contributions. The former are derived from realistic potentials (i.e., consistent with two nucleon data). The latter incorporate the pure monopole terms necessary to correct the bad saturation and shell-formation properties of the realistic two-body forces. This combination appears to solve a number of hitherto puzzling problems. In the present review we will concentrate on those results which illustrate the global features of the approach: the universality of the effective interaction and the capacity of the Shell Model to describe simultaneously all the manifestations of the nuclear dynamics either of single particle or collective nature. We will also treat in some detail the problems associated with rotational motion, the origin of quenching of the Gamow Teller transitions, the double beta-decays, the effect of isospin non conserving nuclear forces, and the specificities of the very neutron rich nuclei. Many other calculations--that appear to have ``merely'' spectroscopic interest--are touched upon briefly, although we are fully aware that much of the credibility of the Shell Model rests on them.

884 citations