scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Achieving High-Performance Nondoped OLEDs with Extremely Small Efficiency Roll-Off by Combining Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence

TL;DR: In this paper, a tailor-made luminogen with an unsymmetrical structure is synthesized and investigated by crystallography, theoretical calculation, spectroscopies, etc., which shows aggregation-induced emission, prominent TADF, and interesting mechanoluminescence property.
Abstract: Luminescent materials with thermally activated delayed fluorescence (TADF) can harvest singlet and triplet excitons to afford high electroluminescence (EL) efficiencies for organic light-emitting diodes (OLEDs). However, TADF emitters generally have to be dispersed into host matrices to suppress emission quenching and/or exciton annihilation, and most doped OLEDs of TADF emitters encounter a thorny problem of swift efficiency roll-off as luminance increases. To address this issue, in this study, a new tailor-made luminogen (dibenzothiophene-benzoyl-9,9-dimethyl-9,10-dihydroacridine, DBT-BZ-DMAC) with an unsymmetrical structure is synthesized and investigated by crystallography, theoretical calculation, spectroscopies, etc. It shows aggregation-induced emission, prominent TADF, and interesting mechanoluminescence property. Doped OLEDs of DBT-BZ-DMAC show high peak current and external quantum efficiencies of up to 51.7 cd A−1 and 17.9%, respectively, but the efficiency roll-off is large at high luminance. High-performance nondoped OLED is also achieved with neat film of DBT-BZ-DMAC, providing excellent maxima EL efficiencies of 43.3 cd A−1 and 14.2%, negligible current efficiency roll-off of 0.46%, and external quantum efficiency roll-off approaching null from peak values to those at 1000 cd m−2. To the best of the authors' knowledge, this is one of the most efficient nondoped TADF OLEDs with small efficiency roll-off reported so far.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the molecular design, photophysical characteristics and OLEDs composed of small-molecule, dendritic and polymeric TADF emitters are discussed.
Abstract: Thermally activated delayed fluorescence (TADF) emitters, which produce light by harvesting both singlet and triplet excitons without noble metals, are emerging as next-generation organic electroluminescent materials. In the past few years, there have been rapid advances in molecular design criteria, our understanding of the photophysics underlying TADF and the applications of TADF materials as emitters in organic light-emitting diodes (OLEDs). This topic is set to remain at the forefront of research in optoelectronic organic materials for the foreseeable future. In this Review, we focus on state-of-the-art materials design and understanding of the photophysical processes, which are being leveraged to optimize the performance of OLED devices. Notably, we also appraise dendritic and polymeric TADF emitters — macromolecular materials that offer the potential advantages of low cost, solution processable and large-area OLED fabrication. Thermally activated delayed fluorescence (TADF) emitters are promising electroluminescent materials for next-generation organic light-emitting diodes (OLEDs). In this Review, the molecular design, photophysical characteristics and OLEDs composed of small-molecule, dendritic and polymeric TADF emitters are discussed.

921 citations

Journal ArticleDOI
TL;DR: This review focuses on the new properties of materials endowed by molecular aggregates beyond the microscopic molecular level and hopes this review will inspire more research into molecular ensembles at/beyond mesoscale level and lead to the significant progresses in material science, biological science, etc.
Abstract: Aggregation-induced emission (AIE) describes a photophysical phenomenon in which molecular aggregates exhibit stronger emission than the single molecules. Over the course of the last 20 years, AIE research has made great strides in material development, mechanistic study and high-tech applications. The achievements of AIE research demonstrate that molecular aggregates show many properties and functions that are absent in molecular species. In this review, we summarize the advances in the field of AIE and its related areas. We specifically focus on the new properties of materials attained by molecular aggregates beyond the microscopic molecular level. We hope this review will inspire more research into molecular ensembles at and beyond the meso level and lead to the significant progress in material and biological science.

655 citations

Journal ArticleDOI
TL;DR: In this paper, two diboron-based molecules, CzDBA and tBuCzDba, were designed and synthesized for organic light-emitting diodes (OLEDs) based on TADF materials.
Abstract: Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) materials are promising for the realization of highly efficient light emitters. However, such devices have so far suffered from efficiency roll-off at high luminance. Here, we report the design and synthesis of two diboron-based molecules, CzDBA and tBuCzDBA, which show excellent TADF properties and yield efficient OLEDs with very low efficiency roll-off. These donor–acceptor–donor (D–A–D) type and rod-like compounds concurrently generate TADF with a photoluminescence quantum yield of ~100% and an 84% horizontal dipole ratio in the thin film. A green OLED based on CzDBA exhibits a high external quantum efficiency of 37.8 ± 0.6%, a current efficiency of 139.6 ± 2.8 cd A−1 and a power efficiency of 121.6 ± 3.1 lm W−1 with an efficiency roll-off of only 0.3% at 1,000 cd m−2. The device has a peak emission wavelength of 528 nm and colour coordinates of the Commission International de l´Eclairage (CIE) of (0.31, 0.61), making it attractive for colour-display applications.

565 citations

Journal ArticleDOI
TL;DR: In-depth discussion on recent progress of fundamental understanding of AIE mechanisms, identifying the existing challenges and opportunities for future developments.
Abstract: Since the introduction of the concept of aggregation-induced emission (AIE) in 2001, many research groups have become involved in AIE research. Aggregation-induced emission luminogens (AIEgens) have emerged as a novel type of advanced material with excellent performance in various fields. Much effort has been devoted to determining the AIE mechanism(s) by theoreticians and experimentalists. Restriction of intramolecular motion has been recognized as the general working mechanism of AIE, but the mechanims of some AIE systems still remain unclear. In this focus article, the progress of the fundamental understanding of the AIE mechanism is reviewed and the future developments in AIE research are discussed. The goal is to provide a brief yet insightful introduction and interpretation of the subject to both new and experienced AIE researchers.

486 citations

Journal ArticleDOI
Can Wang1, Zhen Li1
TL;DR: In this paper, a review of MCF materials with distinct emission properties and various molecular arrangements is presented, focusing on the inherent correlation between molecular packing modes and emissive behaviors.
Abstract: Mechanochromic fluorescence (MCF) materials are a sort of smart material whose photophysical properties are sensitive to mechanical stimulation, such as photoluminescence color, fluorescence quantum yield and emission lifetime. Recently, an increasing number of studies have shown that these photophysical properties can be affected greatly by the molecular packing and conformation, enabling the rapid development of functional materials with mechanochromic fluorescence properties. In this review, we focus on MCF materials with distinct emission properties and various molecular arrangements, especially the inherent correlation between molecular packing modes and emissive behaviors. Many of the selected representative examples possess polymorphism, offering the possibility of exploring different emissions from the exact molecular packing in single crystals. Correspondingly, some remarks are made on the outlook for the next developments in MCF materials and the required thinking about the structure–packing–performance relationship.

432 citations

References
More filters
Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations

Journal ArticleDOI
13 Dec 2012-Nature
TL;DR: A class of metal-free organic electroluminescent molecules in which the energy gap between the singlet and triplet excited states is minimized by design, thereby promoting highly efficient spin up-conversion from non-radiative triplet states to radiative singlet states while maintaining high radiative decay rates.
Abstract: The inherent flexibility afforded by molecular design has accelerated the development of a wide variety of organic semiconductors over the past two decades. In particular, great advances have been made in the development of materials for organic light-emitting diodes (OLEDs), from early devices based on fluorescent molecules to those using phosphorescent molecules. In OLEDs, electrically injected charge carriers recombine to form singlet and triplet excitons in a 1:3 ratio; the use of phosphorescent metal-organic complexes exploits the normally non-radiative triplet excitons and so enhances the overall electroluminescence efficiency. Here we report a class of metal-free organic electroluminescent molecules in which the energy gap between the singlet and triplet excited states is minimized by design, thereby promoting highly efficient spin up-conversion from non-radiative triplet states to radiative singlet states while maintaining high radiative decay rates, of more than 10(6) decays per second. In other words, these molecules harness both singlet and triplet excitons for light emission through fluorescence decay channels, leading to an intrinsic fluorescence efficiency in excess of 90 per cent and a very high external electroluminescence efficiency, of more than 19 per cent, which is comparable to that achieved in high-efficiency phosphorescence-based OLEDs.

5,297 citations

Journal ArticleDOI
TL;DR: In this critical review, recent progress in the area ofAIE research is summarized and typical examples of AIE systems are discussed, from which their structure-property relationships are derived.
Abstract: Luminogenic materials with aggregation-induced emission (AIE) attributes have attracted much interest since the debut of the AIE concept in 2001. In this critical review, recent progress in the area of AIE research is summarized. Typical examples of AIE systems are discussed, from which their structure–property relationships are derived. Through mechanistic decipherment of the photophysical processes, structural design strategies for generating new AIE luminogens are developed. Technological, especially optoelectronic and biological, applications of the AIE systems are exemplified to illustrate how the novel AIE effect can be utilized for high-tech innovations (183 references).

4,996 citations

Journal ArticleDOI
TL;DR: An overview of the quick development in TADF mechanisms, materials, and applications is presented, with a particular emphasis on their different types of metal-organic complexes, D-A molecules, and fullerenes.
Abstract: The design and characterization of thermally activated delayed fluorescence (TADF) materials for optoelectronic applications represents an active area of recent research in organoelectronics. Noble metal-free TADF molecules offer unique optical and electronic properties arising from the efficient transition and interconversion between the lowest singlet (S1) and triplet (T1) excited states. Their ability to harvest triplet excitons for fluorescence through facilitated reverse intersystem crossing (T1→S1) could directly impact their properties and performances, which is attractive for a wide variety of low-cost optoelectronic devices. TADF-based organic light-emitting diodes, oxygen, and temperature sensors show significantly upgraded device performances that are comparable to the ones of traditional rare-metal complexes. Here we present an overview of the quick development in TADF mechanisms, materials, and applications. Fundamental principles on design strategies of TADF materials and the common relationship between the molecular structures and optoelectronic properties for diverse research topics and a survey of recent progress in the development of TADF materials, with a particular emphasis on their different types of metal-organic complexes, D-A molecules, and fullerenes, are highlighted. The success in the breakthrough of the theoretical and technical challenges that arise in developing high-performance TADF materials may pave the way to shape the future of organoelectronics.

1,473 citations

Journal ArticleDOI
TL;DR: Baldo et al. as mentioned in this paper showed that the observed decrease in electrophosphorescent intensity in organic light-emitting devices at high current densities is principally due to triplet-triplet annihilation.
Abstract: In the preceding paper, Paper I [Phys Rev B 62, 10 958 (2000)], we studied the formation and diffusion of excitons in several phosphorescent guest-host molecular organic systems In this paper, we demonstrate that the observed decrease in electrophosphorescent intensity in organic light-emitting devices at high current densities [M A Baldo et al, Nature 395, 151 (1998)] is principally due to triplet-triplet annihilation Using parameters extracted from transient phosphorescent decays, we model the quantum efficiency versus current characteristics of electrophosphorescent devices It is found that the increase in luminance observed for phosphors with short excited-state lifetimes is due primarily to reduced triplet-triplet annihilation We also derive an expression for a limiting current density ${(J}_{0})$ above which triplet-triplet annihilation dominates The expression for ${J}_{0}$ allows us to establish the criteria for identifying useful phosphors and to assist in the optimized design of electrophosphorescent molecules and device structures

1,303 citations