scispace - formally typeset
Search or ask a question
Book

Acoustic Fields and Waves in Solids

01 Jan 1973-
TL;DR: In this article, the authors apply the material developed in the Volume One to various boundary value problems (reflection and refraction at plane surfaces, composite media, waveguides and resonators).
Abstract: This work, part of a two-volume set, applies the material developed in the Volume One to various boundary value problems (reflection and refraction at plane surfaces, composite media, waveguides and resonators). The text also covers topics such as perturbation and variational methods.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used the Landauer formulation of transport theory to predict that dielectric quantum wires should exhibit quantized thermal conductance at low temperatures in a ballistic phonon regime.
Abstract: Using the Landauer formulation of transport theory, we predict that dielectric quantum wires should exhibit quantized thermal conductance at low temperatures in a ballistic phonon regime. The quantum of thermal conductance is universal, independent of the characteristics of the material, and equal to ${\ensuremath{\pi}}^{2}{k}_{B}^{2}T/3h$ where ${k}_{B}$ is the Boltzmann constant, $h$ is Planck's constant, and $T$ is the temperature. Quantized thermal conductance should be experimentally observable in suspended nanostructures adiabatically coupled to reservoirs, devices that can be realized at the present time.

529 citations

Journal ArticleDOI
TL;DR: Theoretical and experimental issues of acquiring dispersion curves for bars of arbitrary cross-section for guided waves have great potential for being applied to the rapid non-destructive evaluation of large structures such as rails in the railroad industry.

512 citations

Journal ArticleDOI
TL;DR: An elastic metamaterial with chiral microstructure made of a single-phase solid material that aims to achieve subwavelength negative refraction of elastic waves and may be used as a flat lens for elastic wave focusing.
Abstract: Negative refraction of elastic waves has been studied and experimentally demonstrated in three- and two-dimensional phononic crystals, but Bragg scattering is impractical for low-frequency wave control because of the need to scale the structures to manageable sizes. Here we present an elastic metamaterial with chiral microstructure made of a single-phase solid material that aims to achieve subwavelength negative refraction of elastic waves. Both negative effective mass density and modulus are observed owing to simultaneous translational and rotational resonances. We experimentally demonstrate negative refraction of the longitudinal elastic wave at the deep-subwavelength scale in the metamaterial fabricated in a stainless steel plate. The experimental measurements are in good agreement with numerical simulations. Moreover, wave mode conversion related with negative refraction is revealed and discussed. The proposed elastic metamaterial may thus be used as a flat lens for elastic wave focusing.

479 citations

Journal ArticleDOI
TL;DR: In this paper, the relevance of group velocity to the behavior of finite difference models of time-dependent partial differential equations is surveyed and illustrated, and applications involve the propagation of wave packets in one and two dimensions, numerical dispersion, the behaviour of parasitic waves, and the stability analysis of initial boundary value problems.
Abstract: The relevance of group velocity to the behavior of finite difference models of time-dependent partial differential equations is surveyed and illustrated. Applications involve the propagation of wave packets in one and two dimensions, numerical dispersion, the behavior of parasitic waves, and the stability analysis of initial boundary-value problems.

477 citations

Journal ArticleDOI
TL;DR: In this article, a finite element formulation is presented for modeling the dynamic as well as static response of laminated composites containing distributed piezoelectric ceramics subjected to both mechanical and electrical loadings.
Abstract: A finite element formulation is presented for modeling the dynamic as well as static response of laminated composites containing distributed piezoelectric ceramics subjected to both mechanical and electrical loadings. The formulation was derived from the variational principle with consideration for both the total potential energy of the structures and the electrical potential energy of the piezoceramics. An eight-node three-dimensional composite brick element was implemented for the analysis, and three-dimensional incompatible modes were introduced to take into account the global bending behavior resulting from the local deformations of the piezoceramics. Experiments were also conducted to verify the analysis and the computer simulations. Overall, the comparisons between the predictions and the data agreed fairly well. Numerical examples were also generated by coupling the analysis with simple control algorithms to control actively the response of the integrated structures in a closed loop.

472 citations

References
More filters
Book
01 Jan 1985
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Abstract: First published in 1957, this classic study has been reissued in a paperback version that includes an additional chapter bringing the material up to date. The author formulates the physical properties of crystals systematically in tensor notation, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them. The mathematical groundwork is laid in a discussion of tensors of the first and second ranks. Tensors of higher ranks and matrix methods are then introduced as natural developments of the theory. A similar pattern is followed in discussing thermodynamic and optical aspects.

8,520 citations

Book
01 Jan 1960
TL;DR: In this paper, the authors present a model for waveguide decomposition in terms of waveguide discontinuities and waveguides and cavities, and apply it to artificial dielectrics.
Abstract: Preface. Basic Electromagnetic Theory. Green's Functions. Transverse Electromagnetic Waves. Transmission Lines. Waveguides and Cavities. Inhomogeneously Filled Waveguides and Dielectric Resonators. Excitation of Waveguides and Cavities. Variational Methods for Waveguide Discontinuities. Periodic Structures. Integral Transform and Function-Theoretic Techniques. Surface Waveguides. Artificial Dielectrics. Mathematical Appendix. Name Index. Subject Index. About the Author.

4,393 citations

BookDOI
01 Jan 1969

1,613 citations

Book
15 Mar 2007

999 citations