scispace - formally typeset
Journal ArticleDOI

Acquiring linear subspaces for face recognition under variable lighting

Reads0
Chats0
TLDR
This paper shows how to arrange physical lighting so that the acquired images of each object can be directly used as the basis vectors of a low-dimensional linear space and that this subspace is close to those acquired by the other methods.
Abstract
Previous work has demonstrated that the image variation of many objects (human faces in particular) under variable lighting can be effectively modeled by low-dimensional linear spaces, even when there are multiple light sources and shadowing. Basis images spanning this space are usually obtained in one of three ways: a large set of images of the object under different lighting conditions is acquired, and principal component analysis (PCA) is used to estimate a subspace. Alternatively, synthetic images are rendered from a 3D model (perhaps reconstructed from images) under point sources and, again, PCA is used to estimate a subspace. Finally, images rendered from a 3D model under diffuse lighting based on spherical harmonics are directly used as basis images. In this paper, we show how to arrange physical lighting so that the acquired images of each object can be directly used as the basis vectors of a low-dimensional linear space and that this subspace is close to those acquired by the other methods. More specifically, there exist configurations of k point light source directions, with k typically ranging from 5 to 9, such that, by taking k images of an object under these single sources, the resulting subspace is an effective representation for recognition under a wide range of lighting conditions. Since the subspace is generated directly from real images, potentially complex and/or brittle intermediate steps such as 3D reconstruction can be completely avoided; nor is it necessary to acquire large numbers of training images or to physically construct complex diffuse (harmonic) light fields. We validate the use of subspaces constructed in this fashion within the context of face recognition.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Robust Face Recognition via Sparse Representation

TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Journal ArticleDOI

Robust Recovery of Subspace Structures by Low-Rank Representation

TL;DR: It is shown that the convex program associated with LRR solves the subspace clustering problem in the following sense: When the data is clean, LRR exactly recovers the true subspace structures; when the data are contaminated by outliers, it is proved that under certain conditions LRR can exactly recover the row space of the original data.
Journal ArticleDOI

Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions

TL;DR: This work presents a simple and efficient preprocessing chain that eliminates most of the effects of changing illumination while still preserving the essential appearance details that are needed for recognition, and improves robustness by adding Kernel principal component analysis (PCA) feature extraction and incorporating rich local appearance cues from two complementary sources.
Journal ArticleDOI

Online Learning for Matrix Factorization and Sparse Coding

TL;DR: In this paper, a new online optimization algorithm based on stochastic approximations is proposed to solve the large-scale matrix factorization problem, which scales up gracefully to large data sets with millions of training samples.
Journal ArticleDOI

Sparse Subspace Clustering: Algorithm, Theory, and Applications

TL;DR: In this article, a sparse subspace clustering algorithm is proposed to cluster high-dimensional data points that lie in a union of low-dimensional subspaces, where a sparse representation corresponds to selecting a few points from the same subspace.
References
More filters
Book

Matrix computations

Gene H. Golub
Book

Partial Differential Equations

TL;DR: In this paper, the authors present a theory for linear PDEs: Sobolev spaces Second-order elliptic equations Linear evolution equations, Hamilton-Jacobi equations and systems of conservation laws.
Journal ArticleDOI

Eigenfaces for recognition

TL;DR: A near-real-time computer system that can locate and track a subject's head, and then recognize the person by comparing characteristics of the face to those of known individuals, and that is easy to implement using a neural network architecture.
Journal ArticleDOI

From few to many: illumination cone models for face recognition under variable lighting and pose

TL;DR: A generative appearance-based method for recognizing human faces under variation in lighting and viewpoint that exploits the fact that the set of images of an object in fixed pose but under all possible illumination conditions, is a convex cone in the space of images.
Proceedings ArticleDOI

The CMU Pose, Illumination, and Expression (PIE) database

TL;DR: Between October 2000 and December 2000, a database of over 40,000 facial images of 68 people was collected, using the CMU 3D Room to imaged each person across 13 different poses, under 43 different illumination conditions, and with four different expressions.
Related Papers (5)