scispace - formally typeset
Open AccessJournal ArticleDOI

Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor

Reads0
Chats0
TLDR
The results suggest that, in humans, a single photopigment may be primarily responsible for melatonin suppression, and its peak absorbance appears to be distinct from that of rod and cone cellphotopigments for vision.
Abstract
The photopigment in the human eye that transduces light for circadian and neuroendocrine regulation, is unknown. The aim of this study was to establish an action spectrum for light-induced melatonin suppression that could help elucidate the ocular photoreceptor system for regulating the human pineal gland. Subjects (37 females, 35 males, mean age of 24.5 +/- 0.3 years) were healthy and had normal color vision. Full-field, monochromatic light exposures took place between 2:00 and 3:30 A.M. while subjects' pupils were dilated. Blood samples collected before and after light exposures were quantified for melatonin. Each subject was tested with at least seven different irradiances of one wavelength with a minimum of 1 week between each nighttime exposure. Nighttime melatonin suppression tests (n = 627) were completed with wavelengths from 420 to 600 nm. The data were fit to eight univariant, sigmoidal fluence-response curves (R(2) = 0.81-0.95). The action spectrum constructed from these data fit an opsin template (R(2) = 0.91), which identifies 446-477 nm as the most potent wavelength region providing circadian input for regulating melatonin secretion. The results suggest that, in humans, a single photopigment may be primarily responsible for melatonin suppression, and its peak absorbance appears to be distinct from that of rod and cone cell photopigments for vision. The data also suggest that this new photopigment is retinaldehyde based. These findings suggest that there is a novel opsin photopigment in the human eye that mediates circadian photoreception.

read more

Citations
More filters
Journal ArticleDOI

Solid-State Light Sources Getting Smart

TL;DR: The high efficiency of solid-state sources already provides energy savings and environmental benefits in a number of applications, but these sources also offer controllability of their spectral power distribution, spatial distribution, color temperature, temporal modulation, and polarization properties.
Journal ArticleDOI

Sleep Patterns and Predictors of Disturbed Sleep in a Large Population of College Students

TL;DR: It is demonstrated that insufficient sleep and irregular sleep-wake patterns, which have been extensively documented in younger adolescents, are also present at alarming levels in the college student population.
Journal ArticleDOI

Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN.

TL;DR: An anatomically distinct population of ‘giant’, melanopsin-expressing ganglion cells in the primate retina that, in addition to being intrinsically photosensitive, are strongly activated by rods and cones, and display a rare, S-Off, (L + M)-On type of colour-opponent receptive field.
Journal ArticleDOI

Physiology of circadian entrainment.

TL;DR: Several aspects of the mechanisms for photic entrainment of mammalian circadian rhythms are covered, including retinal sensitivity to light by means of novel photopigments as well as circadian variations in the retina that contribute to the regulation of retinal physiology.
References
More filters
Journal ArticleDOI

Pineal Melatonin: Cell Biology of Its Synthesis and of Its Physiological Interactions*

TL;DR: The pineal gland can be rapidly removed from rodents with minimal damage to adjacent neural structures using a specially designed trephine, and since the mid 1960s, research on the gland has become a very active area of investigation.
Journal ArticleDOI

Light Suppresses Melatonin Secretion in Humans

TL;DR: Findings establish that the human response to light is qualitatively similar to that of other mammals.
Journal ArticleDOI

Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms.

TL;DR: It is shown that mice lacking the Cry1 or Cry2 protein display accelerated and delayed free-running periodicity of locomotor activity, respectively, which suggests that, in addition to a possible photoreceptor and antagonistic clock-adjusting function, both proteins are essential for the maintenance of circadian rhythmicity.
Journal ArticleDOI

A Novel Human Opsin in the Inner Retina

TL;DR: The unique inner retinal localization of melanopsin suggests that it is not involved in image formation but rather may mediate nonvisual photoreceptive tasks, such as the regulation of circadian rhythms and the acute suppression of pineal melatonin.
Related Papers (5)