scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Active shape models—their training and application

11 Jan 1995-Computer Vision and Image Understanding (Elsevier Science Inc.)-Vol. 61, Iss: 1, pp 38-59
TL;DR: This work describes a method for building models by learning patterns of variability from a training set of correctly annotated images that can be used for image search in an iterative refinement algorithm analogous to that employed by Active Contour Models (Snakes).
About: This article is published in Computer Vision and Image Understanding.The article was published on 1995-01-11. It has received 7969 citations till now. The article focuses on the topics: Active shape model & Active appearance model.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper presents work on computing shape models that are computationally fast and invariant basic transformations like translation, scaling and rotation, and proposes shape detection using a feature called shape context, which is descriptive of the shape of the object.
Abstract: We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by: (1) solving for correspondences between points on the two shapes; (2) using the correspondences to estimate an aligning transform. In order to solve the correspondence problem, we attach a descriptor, the shape context, to each point. The shape context at a reference point captures the distribution of the remaining points relative to it, thus offering a globally discriminative characterization. Corresponding points on two similar shapes will have similar shape contexts, enabling us to solve for correspondences as an optimal assignment problem. Given the point correspondences, we estimate the transformation that best aligns the two shapes; regularized thin-plate splines provide a flexible class of transformation maps for this purpose. The dissimilarity between the two shapes is computed as a sum of matching errors between corresponding points, together with a term measuring the magnitude of the aligning transform. We treat recognition in a nearest-neighbor classification framework as the problem of finding the stored prototype shape that is maximally similar to that in the image. Results are presented for silhouettes, trademarks, handwritten digits, and the COIL data set.

6,693 citations


Cites methods from "Active shape models—their training ..."

  • ...[10] compare brightness values but rst attempt to warp the images onto one another using a dense correspondence eld....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors provide an up-to-date critical survey of still-and video-based face recognition research, and provide some insights into the studies of machine recognition of faces.
Abstract: As one of the most successful applications of image analysis and understanding, face recognition has recently received significant attention, especially during the past several years. At least two reasons account for this trend: the first is the wide range of commercial and law enforcement applications, and the second is the availability of feasible technologies after 30 years of research. Even though current machine recognition systems have reached a certain level of maturity, their success is limited by the conditions imposed by many real applications. For example, recognition of face images acquired in an outdoor environment with changes in illumination and/or pose remains a largely unsolved problem. In other words, current systems are still far away from the capability of the human perception system.This paper provides an up-to-date critical survey of still- and video-based face recognition research. There are two underlying motivations for us to write this survey paper: the first is to provide an up-to-date review of the existing literature, and the second is to offer some insights into the studies of machine recognition of faces. To provide a comprehensive survey, we not only categorize existing recognition techniques but also present detailed descriptions of representative methods within each category. In addition, relevant topics such as psychophysical studies, system evaluation, and issues of illumination and pose variation are covered.

6,384 citations

Journal ArticleDOI
Abstract: We describe a new method of matching statistical models of appearance to images. A set of model parameters control modes of shape and gray-level variation learned from a training set. We construct an efficient iterative matching algorithm by learning the relationship between perturbations in the model parameters and the induced image errors.

6,200 citations

Journal ArticleDOI
TL;DR: A look at progress in the field over the last 20 years is looked at and some of the challenges that remain for the years to come are suggested.
Abstract: The analysis of medical images has been woven into the fabric of the pattern analysis and machine intelligence (PAMI) community since the earliest days of these Transactions. Initially, the efforts in this area were seen as applying pattern analysis and computer vision techniques to another interesting dataset. However, over the last two to three decades, the unique nature of the problems presented within this area of study have led to the development of a new discipline in its own right. Examples of these include: the types of image information that are acquired, the fully three-dimensional image data, the nonrigid nature of object motion and deformation, and the statistical variation of both the underlying normal and abnormal ground truth. In this paper, we look at progress in the field over the last 20 years and suggest some of the challenges that remain for the years to come.

4,249 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations


Cites background from "Active shape models—their training ..."

  • ...1993); (b) searching for the strongest gradient along the normal to each control point (Cootes et al. 1995)....

    [...]

  • ...4: Point distribution model for a set of resistors (Cootes et al. 1995): (a) set of input resistor shapes; (b) assignment of control points to the boundary; (c) distribution (scatter plot) of point locations; (d) first (largest) mode of variation in the ensemble shapes....

    [...]

  • ...objects such as medical images or body parts such as hands (Cootes et al. 1995)....

    [...]

  • ...In practice, it is more common to estimate a set of shape priors on the typical distribution of the control points {xk} (Cootes et al. 1995)....

    [...]

  • ...Alternatively, a separate detection and alignment stages can be run to first localize and orient the objects of interest (Cootes et al. 1995)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the problem of translating, rotating, reflecting and scaling configurations to minimize the goodness-of-fit criterion, where Gi is the centroid of the points in p-dimensional space.
Abstract: SupposePi(i) (i = 1, 2, ...,m, j = 1, 2, ...,n) give the locations ofmn points inp-dimensional space. Collectively these may be regarded asm configurations, or scalings, each ofn points inp-dimensions. The problem is investigated of translating, rotating, reflecting and scaling them configurations to minimize the goodness-of-fit criterion Σi=1m Σi=1n Δ2(Pj(i)Gi), whereGi is the centroid of them pointsPi(i) (i = 1, 2, ...,m). The rotated positions of each configuration may be regarded as individual analyses with the centroid configuration representing a consensus, and this relationship with individual scaling analysis is discussed. A computational technique is given, the results of which can be summarized in analysis of variance form. The special casem = 2 corresponds to Classical Procrustes analysis but the choice of criterion that fits each configuration to the common centroid configuration avoids difficulties that arise when one set is fitted to the other, regarded as fixed.

2,852 citations

Journal ArticleDOI
TL;DR: Current methods of parameter solving are extended to handle objects with arbitrary curved surfaces and with any number of internal parameters representing articulation, variable dimensions, or surface deformations to allow model-based vision to be used for a much wider class of problems than was possible with previous methods.
Abstract: Model-based recognition and motion tracking depend upon the ability to solve for projection and model parameters that will best fit a 3-D model to matching 2-D image features. The author extends current methods of parameter solving to handle objects with arbitrary curved surfaces and with any number of internal parameters representing articulation, variable dimensions, or surface deformations. Numerical stabilization methods are developed that take account of inherent inaccuracies in the image measurements and allow useful solutions to be determined even when there are fewer matches than unknown parameters. The Levenberg-Marquardt method is used to always ensure convergence of the solution. These techniques allow model-based vision to be used for a much wider class of problems than was possible with previous methods. Their application is demonstrated for tracking the motion of curved, parameterized objects. >

1,000 citations

Journal ArticleDOI
TL;DR: The authors formulate the deformable superquadrics which incorporate the global shape parameters of a conventional superellipsoid with the local degrees of freedom of a spline to form a novel class of dynamic models that can deform both locally and globally.
Abstract: The authors present a physically based approach to fitting complex three-dimensional shapes using a novel class of dynamic models that can deform both locally and globally. They formulate the deformable superquadrics which incorporate the global shape parameters of a conventional superellipsoid with the local degrees of freedom of a spline. The model's six global deformational degrees of freedom capture gross shape features from visual data and provide salient part descriptors for efficient indexing into a database of stored models. The local deformation parameters reconstruct the details of complex shapes that the global abstraction misses. The equations of motion which govern the behavior of deformable superquadrics make them responsive to externally applied forces. The authors fit models to visual data by transforming the data into forces and simulating the equations of motion through time to adjust the translational, rotational, and deformational degrees of freedom of the models. Model fitting experiments involving 2D monocular image data and 3D range data are presented. >

792 citations

Book ChapterDOI
14 Jun 1993
TL;DR: It is described how the models can be used in local image search and give examples of their application to medical images, and how the method can be simply extended to segment 3-D objects in volume images and to track structures in image sequences.
Abstract: This paper describes a technique for building compact models of the shape and appearance of flexible objects (such as organs) seen in 2-D images The models are derived from the statistics of sets of labelled images of examples of the objects Each model consists of a flexible shape template, describing how important points of the object can vary, and a statistical model of the expected grey levels in regions around each model point The shape models are parameterised in such a way as to allow ‘legal’ configurations Such models have proved useful in a wide variety of applications We describe how the models can be used in local image search and give examples of their application to medical images We also describe how the method can be simply extended to segment 3-D objects in volume images and to track structures in image sequences

729 citations

Proceedings ArticleDOI
04 Dec 1990
TL;DR: A physically-based approach is presented to fitting complex 3D shapes using a novel class of dynamic models which incorporate the global shape parameters of a conventional superellipsoid with the local degrees of freedom of a spline.
Abstract: A physically-based approach is presented to fitting complex 3D shapes using a novel class of dynamic models. These models can deform both locally and globally. The authors formulate deformable superquadrics which incorporate the global shape parameters of a conventional superellipsoid with the local degrees of freedom of a spline. The local/global representational power of a deformable superquadric simultaneously satisfies the conflicting requirements of shape reconstruction and shape recognition. The model's six global deformational degrees of freedom capture gross shape features from visual data and provide salient part descriptors for efficient indexing into a database of stored models. Model fitting experiments involving 2D monocular image data and 3D range data are reported. >

595 citations