scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Active vibration isolation of electronic components by piezocomposite clamped–clamped beam

01 Jul 2011-Mechanical Systems and Signal Processing (Academic Press)-Vol. 25, Iss: 5, pp 1687-1701
TL;DR: In this paper, an active suspension system is located between the host board and the sensitive element to isolate the element, which is stable for its collocated version and does not need a numerical model of the system to be controlled.
About: This article is published in Mechanical Systems and Signal Processing.The article was published on 2011-07-01 and is currently open access. It has received 18 citations till now. The article focuses on the topics: Vibration isolation & Electronic component.
Citations
More filters
Journal ArticleDOI
TL;DR: The developed AVC system with a multichannel capability is successfully deployed for the AVC testing of the full-scale wing of an all composite two seater transport aircraft and demonstrates the usefulness of the system’s reconfigurability for real time applications.

28 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a performance analysis of an improved modal synchronized switch damping on inductor approach called "SSDI-Max." The particularity of this new approach is to maximize the self-generated voltage amplitude by a proper definition of the switch instants according to the chosen targeted mode.
Abstract: Modal synchronized switch damping on inductor control is a vibration damping technique that combines the advantages of both semiactive and active control techniques based on a modal strategy. This method allows targeting any unwanted vibration mode of a structure while using a semiactive autonomous synchronized switch damping on inductor damping technique. This article presents a performance analysis of an improved modal synchronized switch damping on inductor approach called “SSDI-Max.” The particularity of this new approach is to maximize the self-generated voltage amplitude by a proper definition of the switch instants (voltage inversion) according to the chosen targeted mode. Following the basic modal synchronized switch damping on inductor technique, the switch is synchronized with the chosen modal coordinate extremum. In the investigated approach, the voltage is increased by waiting for the next voltage extremum following immediately any targeted modal coordinate extremum in a given time window. Thi...

19 citations


Cites methods from "Active vibration isolation of elect..."

  • ...The active techniques (Fuller and Jones, 1987; Meyer and Collet, 2011; Preumont et al., 2002; Snyder and Hansen, 1991) consist of a control system with actuators supplied by a controlled electric field usually generated by an amplifier driven by a feedback loop using sensors and according to a…...

    [...]

  • ...The active techniques (Fuller and Jones, 1987; Meyer and Collet, 2011; Preumont et al., 2002; Snyder and Hansen, 1991) consist of a control system with actuators supplied by a controlled electric field usually generated by an amplifier driven by a feedback loop using sensors and according to a given control theory approach....

    [...]

Journal ArticleDOI
TL;DR: In this paper, an approach was developed for the identification of the coupling effects of a smart material used in a composite curved beam, which was tested by applying active modal control to the beam, using a reduced model based on this identification.
Abstract: Smart composite structures have an enormous potential for industrial applications, in terms of mass reduction, high material resistance and flexibility. The correct characterization of these complex structures is essential for active vibration control or structural health monitoring applications. The identification process generally calls for the determination of a generalized electromechanical coupling coefficient. As this process can in practice be difficult to implement, an original approach, presented in this paper, has been developed for the identification of the coupling effects of a smart material used in a composite curved beam. The accuracy of the proposed identification technique is tested by applying active modal control to the beam, using a reduced model based on this identification. The studied structure was as close to reality as possible, and made use of integrated transducers, low-cost sensors, clamped boundary conditions and substantial, complex excitation sources. PVDF (polyvinylidene fluoride) and MFC (macrofiber composite) transducers were integrated into the composite structure, to ensure their protection from environmental damage. The experimental identification described here was based on a curve fitting approach combined with the reduced model. It allowed a reliable, powerful modal control system to be built, controlling two modes of the structure. A linear quadratic Gaussian algorithm was used to determine the modal controller‐observer gains. The selected modes were found to have an attenuation as strong as 13 dB in experiments, revealing the effectiveness of this method. In this study a generalized approach is proposed, which can be extended to most complex or composite industrial structures when they are subjected to vibration. (Some figures may appear in colour only in the online journal)

15 citations


Cites methods from "Active vibration isolation of elect..."

  • ...Meyer and Collet [10] used straight piezocomposite beams for the active isolation of electronic components....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a bismuth-borate-zinc glass was vacuum brazed with alumina ceramics and copper at temperatures between 660 and 720°C for 20 minutes.

14 citations

Journal ArticleDOI
Liang Zhu1, Chundong Xu1, Bo Ren1, Haosu Luo1, Wang Dong1 
TL;DR: In this paper, a double clamped-clamped beams serials connected by a rectangular frame, coupled with a proof mass and supporting mass near the center of upper and lower beams, were used to reduce the resonance frequency.
Abstract: A novel structure of piezoelectric energy harvester was developed using double clamped–clamped beams serials connected by a rectangular frame, coupled with a proof mass and supporting mass near the center of upper and lower beams. The serials connection has a significant effect on reducing the resonance frequency, which is predicted by theoretical analysis and validated by experimental, and a reduction of 36.7% is achieved compared with the single clamped–clamped beam. More importantly, the bandwidth of the power spectrum is 36.4% wider, by introducing an asymmetry of 1 mm between the proof and supporting mass, than that of the symmetric setup. More than 0.8 mW ranging from 144 to 170 Hz is obtained near the two peaks of 0.992 mW at 150 Hz and 0.844 mW at 165 Hz, respectively. For its lower frequency, broader bandwidth and compact volume, the asymmetric harvester has promising application in wireless sensors networks.

13 citations

References
More filters
01 Jan 2003
TL;DR: The author explains the design process and some concepts in structural dynamics, including Hamilton's principle, which guided the development of the piezoelectric beam actuator.
Abstract: Preface to the third edition.- Preface to the second edition.- Preface to the first edition.- 1 Introduction.- 1.1 Active versus passive.- 1.2 Vibration suppression.- 1.3 Smart materials and structures.- 1.4 Control strategies.- 1.4.1 Feedback.- 1.4.2 Feedforward.- 1.5 The various steps of the design.- 1.6 Plant description, error and control budget.- 1.7 Readership and Organization of the book.- 1.8 References.- 1.9 Problems.- 2 Some concepts in structural dynamics.- 2.1 Introduction.- 2.2 Equation of motion of a discrete system.- 2.3 Vibration modes.- 2.4 Modal decomposition.- 2.4.1 Structure without rigid body modes.- 2.4.2 Dynamic flexibility matrix.- 2.4.3 Structure with rigid body modes.- 2.4.4 Example.- 2.5 Collocated control system.- 2.5.1 Transmission zeros and constrained system.- 2.6 Continuous structures.- 2.7 Guyan reduction.- 2.8 Craig-Bampton reduction.- 2.9 References.- 2.10 Problems.- 3 Electromagnetic and piezoelectric transducers.- 3.1 Introduction.- 3.2 Voice coil transducer.- 3.2.1 Proof-mass actuator.- 3.2.2 Geophone.- 3.3 General electromechanical transducer.- 3.3.1 Constitutive equations.- 3.3.2 Self-sensing.- 3.4 Reaction wheels and gyrostabilizers.- 3.5 Smart materials.- 3.6 Piezoelectric transducer.- 3.6.1 Constitutive relations of a discrete transducer.- 3.6.2 Interpretation of k2.- 3.6.3 Admittance of the piezoelectric transducer.- 3.7 References.- 3.8 Problems.- 4 Piezoelectric beam, plate and truss.- 4.1 Piezoelectric material.- 4.1.1 Constitutive relations.- 4.1.2 Coenergy density function.- 4.2 Hamilton's principle.- 4.3 Piezoelectric beam actuator.- 4.3.1 Hamilton's principle.- 4.3.2 Piezoelectric loads.- 4.4 Laminar sensor.- 4.4.1 Current and charge amplifiers.- 4.4.2 Distributed sensor output.- 4.4.3 Charge amplifier dynamics.- 4.5 Spatial modalfilters.- 4.5.1 Modal actuator.- 4.5.2 Modal sensor.- 4.6 Active beam with collocated actuator-sensor.- 4.6.1 Frequency response function.- 4.6.2 Pole-zero pattern.- 4.6.3 Modal truncation.- 4.7 Admittance of a beam with a piezoelectric patch.- 4.8 Piezoelectric laminate.- 4.8.1 Two dimensional constitutive equations.- 4.8.2 Kirchhoff theory.- 4.8.3 Stiffness matrix of a multi-layer elastic laminate.- 4.8.4 Multi-layer laminate with a piezoelectric layer.- 4.8.5 Equivalent piezoelectric loads.- 4.8.6 Sensor output.- 4.8.7 Beam model vs. plate model.- 4.8.8 Additional remarks.- 4.9 Active truss.- 4.9.1 Open-loop transfer function.- 4.9.2 Admittance function.- 4.10 Finite element formulation.- 4.11 References.- 4.12 Problems.- 5 Passive damping with piezoelectric transducers.- 5.1 Introduction.- 5.2 Resistive shunting.- 5.3 Inductive shunting.- 5.4 Switched shunt.- 5.4.1 Equivalent damping ratio.- 5.5 References.- 5.6 Problems.- 6 Collocated versus non-collocated control.- 6.1 Introduction.- 6.2 Pole-zero flipping.- 6.3 The two-mass problem.- 6.3.1 Collocated control.- 6.3.2 Non-collocated control.- 6.4 Notch filter.- 6.5 Effect of pole-zero flipping on the Bode plots.- 6.6 Nearly collocated control system.- 6.7 Non-collocated control systems.- 6.8 The role of damping.- 6.9 References.- 6.10 Problems ..- 7 Active damping with collocated system.- 7.1 Introduction.- 7.2 Lead control.- 7.3 Direct velocity feedback (DVF).- 7.4 Positive Position Feedback (PPF).- 7.5 Integral Force Feedback(IFF).- 7.6 Duality between the Lead and the IFF controllers.- 7.6.1 Root-locus of a single mode.- 7.6.2 Open-loop poles and zeros.- 7.7 Actuator and sensor dynamics.- 7.8 Decentralized control with collocated pairs.- 7.8.1 Cross talk.- 7.8.2 Force actuator and displacement sensor.- 7.8.3 Displacement actuator and force sensor.- 7.9 References.- 7.10 Problems.- 8 Vibration isolation.- 8.1 Introduction.- 8.2 Relaxation isolator.- 8.2.1 Electromagnetic realization.- 8.3 Active isolation.- 8.3.1 Sky-hook damper.- 8.3.2 Integral Force Feedback.- 8.4 Flexible body.- 8.4.1 Free-free beam with isolator.- 8.5 Payload isolation in spacecraft.- 8.5.1 Interaction isolator/attitude control.- 8.5.2 Gough-Stewart platform.- 8.6 Six-axis isolator.- 8.6.1 Relaxation isolator.- 8.6.2 Integral Force Feedback.- 8.6.3 Spherical joints, modal spread.- 8.7 Active vs. passive.- 8.8 Car suspension.- 8.9 References.- 8.10 Problems.- 9 State space approach.- 9.1 Introduction.- 9.2 State space description.- 9.2.1 Single degree of freedom oscillator.- 9.2.2 Flexible structure.- 9.2.3 Inverted pendulum.- 9.3 System transfer function.- 9.3.1 Poles and zeros.- 9.4 Pole placement by state feedback.- 9.4.1 Example: oscillator.- 9.5 Linear Quadratic Regulator.- 9.5.1 Symmetric root locus.- 9.5.2 Inverted pendulum.- 9.6 Observer design.- 9.7 Kalman Filter.- 9.7.1 Inverted pendulum.- 9.8 Reduced order observer.- 9.8.1 Oscillator.- 9.8.2 Inverted pendulum.- 9.9 Separation principle.- 9.10 Transfer function of the compensator.- 9.10.1 The two-mass problem.- 9.11 References.- 9.12 Problems.- 10 Analysis and synthesis in the frequency domain.- 10.1 Gain and phase margins.- 10.2 Nyquist criterion.- 10.2.1 Cauchy's principle.- 10.2.2 Nyquist stability criterion.- 10.3 Nichols chart.- 10.4 Feedback specification for SISO systems.- 10.4.1 Sensitivity.- 10.4.2 Tracking error.- 10.4.3 Performance specification.- 10.4.4 Unstructured uncertainty.- 10.4.5 Robust performance and robust stability.- 10.5 Bode gain-phase relationships.- 10.6 The Bode Ideal Cutoff.- 10.7 Non-minimum phase systems.- 10.8 Usual compensators.- 10.8.1 System type.- 10.8.2 Lead compensator.- 10.8.3 PI compensator.- 10.8.4 Lag compensator.- 10.8.5 PID compensator.- 10.9 Multivariable systems.- 10.9.1 Performance specification.- 10.9.2 Small gain theorem.- 10.9.3 Stability robustness tests.- 10.9.4 Residual dynamics.- 10.10References.- 10.11Problems.- 11 Optimal control.- 11.1 Introduction.- 11.2 Quadratic integral.- 11.3 Deterministic LQR.- 11.4 Stochastic response to a white noise.- 11.4.1 Remark.- 11.5 Stochastic LQR.- 11.6 Asymptotic behavior of the closed-loop.- 11.7 Prescribed degree of stability.- 11.8 Gain and phase margins of the LQR.- 11.9 Full state observer.- 11.9.1 Covariance of the reconstruction error.- 11.10Kalman-Bucy Filter (KBF).- 11.11Linear Quadratic Gaussian (LQG).- 11.12Duality.- 11.13Spillover.- 11.13.1Spillover reduction.- 11.14Loop Transfer Recovery (LTR).- 11.15Integral control with state feedback.- 11.16Frequency shaping.- 11.16.1Frequency-shaped cost functionals.- 11.16.2Noise model ..- 11.17References.- 11.18Problems.- 12 Controllability and Observability.- 12.1 Introduction.- 12.1.1 Definitions.- 12.2 Controllability and observability matrices.- 12.3 Examples.- 12.3.1 Cart with two inverted pendulums.- 12.3.2 Double inverted pendulum.- 12.3.3 Two d.o.f. oscillator.- 12.4 State transformation.- 12.4.1 Control canonical form.- 12.4.2 Left and right eigenvectors.- 12.4.3 Diagonal form.- 12.5 PBH test.- 12.6 Residues.- 12.7 Example.- 12.8 Sensitivity.- 12.9 Controllability and observability Gramians.- 12.10Internally balanced coordinates.- 12.11Model reduction.- 12.11.1Transfer equivalent realization.- 12.11.2Internally balanced realization.- 12.11.3Example.- 12.12References.- 12.13Problems.- 13 Stability.- 13.1 Introduction.- 13.1.1 Phase portrait.- 13.2 Linear systems.- 13.2.1 Routh-Hurwitz criterion.- 13.3 Lyapunov's direct method.- 13.3.1 Introductory example.- 13.3.2 Stability theorem.- 13.3.3 Asymptotic stability theorem.- 13.3.4 Lasalle's theorem.- 13.3.5 Geometric interpretation.- 13.3.6 Instability theorem.- 13.4 Lyapunov functions for linear systems.- 13.5 Lyapunov's indirect method ..- 13.6 An application to controller design.- 13.7 Energy absorbing controls.- 13.8 References.- 13.9 Problems.- 14 Applications.- 14.1 Digital implementation.- 14.1.1 Sampling, aliasing and prefiltering.- 14.1.2 Zero-order hold, computational delay.- 14.1.3 Quantization.- 14.1.4 Discretization of a continuous controller.- 14.2 Active damping of a truss structure.- 14.2.1 Actuator placement.- 14.2.2 Implementation, experimental results.- 14.3 Active damping generic interface.- 14.3.1 Active damping.- 14.3.2 Experiment.- 14.3.3 Pointing and position control.- 14.4 Active damping of a plate.- 14.4.1 Control design.- 14.5 Active damping of a stiff beam.- 14.5.1 System design.- 14.6 The HAC/LAC strategy.- 14.6.1 Wide-band position control.- 14.6.2 Compensator design.- 14.6.3 Results.- 14.7 Vibroacoustics: Volume displacement sensors.- 14.7.1 QWSIS sensor.- 14.7.2 Discrete array sensor.- 14.7.3 Spatial aliasing.- 14.7.4 Distributed sensor.- 14.8 References.- 14.9 Problems.- 5 Tendon Control of Cable Structures.- 15.1 Introduction.- 15.2 Tendon control of strings and cables.- 15.3 Active damping strategy.- 15.4 Basic Experiment.- 15.5 Linear theory of decentralized active damping.- 15.6 Guyed truss experiment.- 15.7 Micro Precision Interferometer testbed.- 15.8 Free floating truss experiment.- 15.9 Application to cable-stayed bridges.- 15.10Laboratory experiment.- 15.11Control of parametric resonance.- 15.12Large scale experiment.- 15.13 References.- 16 Active Control of Large Telescopes.- 16.1 Introduction.- 16.2 Adaptive optics.- 16.3 Active optics.- 16.3.1 Monolithic primary mirror.- 16.3.2 Segmented primary mirror.- 16.4 SVD controller.- 16.4.1 Loop shaping of the SVD controller.- 16.5 Dynamics of a segmented mirror.- 16.6 Control-structure interaction.- 16.6.1 Multiplicative uncertainty.- 16.6.2 Additive uncertainty.- 16.6.3 Discussion.- 16.7 References.- 17 Semi-active control.- 17.1 Introduction.- 17.2 Magneto-rheological fluids.- 17.3 MR devices.- 17.4 Semi-active suspension.- 17.4.1 Semi-active devices.- 17.5 Narrow-band disturbance.- 17.5.1 Quarter-car semi-active suspension.- 17.6 References.- 17.7 Problems.- Bibliography.- Index.

1,107 citations

Journal ArticleDOI
TL;DR: In this paper, a piezoelectric laminate theory that uses the piezelectric phenomenon to effect distributed control and sensing of bending, torsion, shearing, shrinking, and stretching of a flexible plate has been developed.
Abstract: A piezoelectric laminate theory that uses the piezoelectric phenomenon to effect distributed control and sensing of bending, torsion, shearing, shrinking, and stretching of a flexible plate has been developed. This newly developed theory is capable of modeling the electromechanical (actuating) and mechanoelectrical (sensing) behavior of a laminate. Emphasis is on the rigorous formulation of distributed piezoelectric sensors and actuators. The reciprocal relationship of the piezoelectric sensors and actuators is also unveiled. Generalized functions are introduced to disclose the physical concept of these piezoelectric sensors and actuators. It is found that the reciprocal relationship is a generic feature of all piezoelectric laminates.

654 citations

Journal ArticleDOI
TL;DR: In this article, the principles of design and means for realization of passive vibration isolation systems for real-life objects are discussed, and a special emphasis is given to effective techniques and methods that are not yet widely used in the practice of vibration isolation in industry.
Abstract: Description: Production equipment for microelectronics, MEMS, and nanotechnology cannot function without vibration isolation. Process plant, power generation machinery, oil, gas, and petrochemical equipment are all subject to vibration. This vibration causes a range of problems and headaches for the engineer that can lead to failure of equipment, downtime, and extra maintenance costs. Isolating vibration and ameliorating it is vital. This valuable and well–written text provides a comprehensive treatment of the principles of design and means for realization of passive vibration isolation systems for real–life objects. A special emphasis is given to effective techniques and methods that are not yet widely used in the practice of vibration isolation in industry. It is written with practitioners in mind and many of the problems addressed and the solutions presented are relevant not only to the isolation of stationary sensitive equipment but also to civil engineering and transport applications. CONTENTS INCLUDE Inertia and geometric properties of typical machines and other mechanical devices Dynamics of single–degreeof–freedom vibration isolation system Vibration isolation system under random excitation Isolation of vibration–sensitive objects Vibration isolation systems; Isolation requirements for vibration producing objects Engine and machinery mounting in vehicles Elasto–damping materials (EDM) High damping metals Material selection for vibration isolators Vibration isolators with metal flexible elements High angular stiffness and anisotropic vibration isolation systems Pneumatic isolators Power transmission couplings

340 citations

Journal ArticleDOI
TL;DR: In this article, a set of piezopolymer devices based on a composite laminate theory for piezoelectric polymer materials was developed, which exhibited both bending and torsion deformation under an applied electric field.
Abstract: A set of piezopolymer devices has been developed based on a composite laminate theory for piezoelectric polymer materials. By using different combinations of ply angles and electrode patterns, a piezopolymer/metal shim plate structure was built that exhibited both bending and torsion deformation under an applied electric field. A set of torsion‐beam sensor structures was also built that could distinguish between bending and torsion or between different vibration modes. These devices were based on a general theory of piezoelectric laminates. The experimental results agreed quite closely with the theoretical predictions. These integrated sensor–actuator devices may find application in the control of microactuators or may be used for modal control of larger continuous structures.

206 citations

Journal ArticleDOI
TL;DR: In this article, the modal sensor/actuator combination is used to achieve critical damping of a particular mode of a one-dimensional cantilever plate, as long as the vibrational amplitude of the controlled structure does not saturate the actuator.
Abstract: Incorporating the piezoelectric effect into classical laminate plate theory, distributed sensors and actuators capable of sensing and controlling the modal vibration of a one‐dimensional cantilever plate are derived theoretically and verified experimentally. It is shown that critical damping of a particular mode can be achieved using such a modal sensor/actuator combination as long as the vibrational amplitude of the controlled structure does not saturate the modal actuator. Since the sensor signal is proportional to the modal coordinate time derivative, velocity feedback control can be employed without using any element tuned to the resonant frequency in the feedback controller. Therefore, the sensitivity of the closed‐loop performance and stability to resonant frequency variations is minimized. By eliminating electromagnetic interference and ground loop noise, critical damping is experimentally demonstrated for the first mode of a one‐dimensional cantilever plate using PVF2 as the sensor/actuator material.

143 citations