scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Acute exercise and subsequent energy intake. A meta-analysis

01 Apr 2013-Appetite (Elsevier)-Vol. 63, Iss: 4, pp 92-104
TL;DR: Results suggest that exercise is effective for producing a short-term energy deficit and that individuals tend not to compensate for the energy expended during exercise in the immediate hours after exercise by altering food intake.
About: This article is published in Appetite.The article was published on 2013-04-01 and is currently open access. It has received 201 citations till now. The article focuses on the topics: Exercise physiology & Weight loss.
Citations
More filters
Journal ArticleDOI
TL;DR: An acute bout of exercise may influence appetite by suppressing levels of acylated ghrelin while simultaneously increasing levels of PYY, GLP-1 and PP, which may contribute to alterations in food and drink intake after acute exercise.
Abstract: Understanding of the impact of an acute bout of exercise on hormones involved in appetite regulation may provide insight into some of the mechanisms that regulate energy balance. In resting conditions, acylated ghrelin is known to stimulate food intake, while hormones such as peptide YY (PYY), pancreatic polypeptide (PP) and glucagon-like peptide 1 (GLP-1) are known to suppress food intake. The objective of this review was to determine the magnitude of exercise effects on levels of gastrointestinal hormones related to appetite, using systematic review and meta-analysis. Additionally, factors such as the exercise intensity, duration and mode, in addition to participant characteristics, were examined to determine their influence on these hormones. Major databases (PubMed, Scopus, Google Scholar, Science Direct, Academic Search Premier and EBSCOHost) were searched, through February 2013, for original studies, abstracts, theses and dissertations that examined responses of appetite hormones to acute exercise. Studies were included if they evaluated appetite hormone responses during and in the hours after an acute bout of exercise and reported area under the concentration–time curve (AUC) values for more than three datapoints. Studies reporting mean or pre/post-values only were excluded. Initially, 75 studies were identified. After evaluation of study quality and validity, using the Physiotherapy Evidence Database scale, data from 20 studies (28 trials) involving 241 participants (77.6 % men) had their data extracted for inclusion in the meta-analyses. A random-effects meta-analysis was conducted for acylated ghrelin (n = 18 studies, 25 trials) and PYY (n = 8 studies, 14 trials), with sub-group analyses and meta-regressions being conducted for moderator variables. Because the number of studies was limited, fixed-effects meta-analyses were performed on PP data (n = 4 studies, 5 trials) and GLP-1 data (n = 5 studies, 8 trials). The results of the meta-analyses indicated that exercise had small to moderate effects on appetite hormone levels, suppressing acylated ghrelin (effect size [ES] Cohen’s d value −0.20, 95 % confidence interval [CI] −0.373 to −0.027; median decrease 16.5 %) and increasing PYY (ES 0.24, 95 % CI 0.007 to 0.475; median increase 8.9 %), GLP-1 (ES 0.275, 95 % CI −0.031 to 0.581; median increase 13 %), and PP (ES 0.50, 95 % CI 0.11 to 0.89; median increase 15 %). No significant heterogeneity was detected in any meta-analysis (using Cochrane’s Q and I 2); however, publication biases were detected for all analyses. No moderator variables were observed to moderate the variability among the studies assessing acylated ghrelin and PYY. The majority of the present literature is acute in nature; therefore, longer-term alterations in appetite hormone concentrations and their influence on food and beverage intake are unknown. Furthermore, our review was limited to English-language studies and studies reporting AUC data. An acute bout of exercise may influence appetite by suppressing levels of acylated ghrelin while simultaneously increasing levels of PYY, GLP-1 and PP, which may contribute to alterations in food and drink intake after acute exercise. Further longitudinal studies and exploration into mechanisms of action are required in order to determine the precise role these hormones play in long-term appetite responses to an exercise intervention.

177 citations


Cites background or methods or result from "Acute exercise and subsequent energ..."

  • ...At this point, it would be applicable to examine the findings of the present meta-analysis in the context of the results of our previous meta-analysis on energy intake after acute exercise [37]....

    [...]

  • ...Publication bias was assessed utilizing funnel plots, as described previously [37] (see Figs....

    [...]

  • ...To assess whether differences in experimental design could explain the variation in ES values between the studies evaluating acylated ghrelin and PYY, we performed sub-group meta-analyses and/or meta-regressions (methodof-moments model), as has been performed previously [37]....

    [...]

  • ...Food intake during the observation period was permitted, and we have reported data on food intake responses to acute exercise bouts elsewhere [37]....

    [...]

Journal ArticleDOI
TL;DR: The aim of this article is to review the research into the main peripheral appetite signals altered in human obesity, together with their modifications after body weight loss with diet and exercise and after bariatric surgery, which may be relevant to strategies for obesity treatment.
Abstract: The aim of this article is to review the research into the main peripheral appetite signals altered in human obesity, together with their modifications after body weight loss with diet and exercise and after bariatric surgery, which may be relevant to strategies for obesity treatment. Body weight homeostasis involves the gut–brain axis, a complex and highly coordinated system of peripheral appetite hormones and centrally mediated neuronal regulation. The list of peripheral anorexigenic and orexigenic physiological factors in both animals and humans is intimidating and expanding, but anorexigenic glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), peptide YY (PYY) and orexigenic ghrelin from the gastrointestinal tract, pancreatic polypeptide (PP) from the pancreas and anorexigenic leptin from adiposites remain the most widely studied hormones. Homeostatic control of food intake occurs in humans, although its relative importance for eating behaviour is uncertain, compared with social and environmental influences. There are perturbations in the gut–brain axis in obese compared with lean individuals, as well as in weight-reduced obese individuals. Fasting and postprandial levels of gut hormones change when obese individuals lose weight, either with surgical or with dietary and/or exercise interventions. Diet-induced weight loss results in long-term changes in appetite gut hormones, postulated to favour increased appetite and weight regain while exercise programmes modify responses in a direction expected to enhance satiety and permit weight loss and/or maintenance. Sustained weight loss achieved by bariatric surgery may in part be mediated via favourable changes to gut hormones. Future work will be necessary to fully elucidate the role of each element of the axis, and whether modifying these signals can reduce the risk of obesity.

169 citations

Journal ArticleDOI
TL;DR: Exercise constitutes an indispensable, yet often underestimated, tool in the management of obesity and has the potential to alleviate the health consequences of obesity, even in the absence of weight loss.
Abstract: Obesity is a multifactorial disease with increasing incidence and burden on societies worldwide. Obesity can be managed through everyday behavioral changes involving energy intake and energy expenditure. Concerning the latter, there is strong evidence that regular exercise contributes to body weight and fat loss, maintenance of body weight and fat reduction, and metabolic fitness in obesity. Appropriate exercise programs should ideally combine large negative energy balance, long-term adherence, and beneficial effects on health and well-being. Endurance training appears to be the most effective in this respect, although resistance training and high-intensity interval training play distinct roles in the effectiveness of exercise interventions. With weight regain being so common, weight loss maintenance is probably the greatest challenge in the successful treatment of obesity. There is an established association between higher levels of physical activity and greater weight loss maintenance, based on the abundance of evidence from prospective observational studies and retrospective analyses. However, proving a causative relationship between exercise and weight loss maintenance is difficult at present. Exercise has the potential to alleviate the health consequences of obesity, even in the absence of weight loss. All in all, exercise constitutes an indispensable, yet often underestimated, tool in the management of obesity.

146 citations

Journal ArticleDOI
01 Mar 2016-Appetite
TL;DR: Blood redistribution during exercise may be important for suppressing ghrelin, while other mechanisms involving cytokine release, changes in plasma glucose and insulin concentrations, SNS activity, and muscle metabolism likely mediate changes in the anorexigenic signals PYY and GLP-1.

131 citations

Journal ArticleDOI
15 Jan 2014-PLOS ONE
TL;DR: No consistent evidence that increased physical activity or exercise effects energy or macronutrient intake is found.
Abstract: Background The magnitude of the negative energy balance induced by exercise may be reduced due to compensatory increases in energy intake. Objective To address the question: Does increased exercise or physical activity alter ad-libitum daily energy intake or macronutrient composition in healthy adults? Data Sources PubMed and Embase were searched (January 1990–January 2013) for studies that presented data on energy and/or macronutrient intake by level of exercise, physical activity or change in response to exercise. Ninety-nine articles (103 studies) were included. Study Eligibility Criteria Primary source articles published in English in peer-reviewed journals. Articles that presented data on energy and/or macronutrient intake by level of exercise or physical activity or changes in energy or macronutrient intake in response to acute exercise or exercise training in healthy (non-athlete) adults (mean age 18–64 years). Study Appraisal and Synthesis Methods Articles were grouped by study design: cross-sectional, acute/short term, non-randomized, and randomized trials. Considerable heterogeneity existed within study groups for several important study parameters, therefore a meta-analysis was considered inappropriate. Results were synthesized and presented by study design. Results No effect of physical activity, exercise or exercise training on energy intake was shown in 59% of cross-sectional studies (n = 17), 69% of acute (n = 40), 50% of short-term (n = 10), 92% of non-randomized (n = 12) and 75% of randomized trials (n = 24). Ninety-four percent of acute, 57% of short-term, 100% of non-randomized and 74% of randomized trials found no effect of exercise on macronutrient intake. Forty-six percent of cross-sectional trials found lower fat intake with increased physical activity. Limitations The literature is limited by the lack of adequately powered trials of sufficient duration, which have prescribed and measured exercise energy expenditure, or employed adequate assessment methods for energy and macronutrient intake. Conclusions We found no consistent evidence that increased physical activity or exercise effects energy or macronutrient intake.

122 citations

References
More filters
Journal ArticleDOI
04 Sep 2003-BMJ
TL;DR: A new quantity is developed, I 2, which the authors believe gives a better measure of the consistency between trials in a meta-analysis, which is susceptible to the number of trials included in the meta- analysis.
Abstract: Cochrane Reviews have recently started including the quantity I 2 to help readers assess the consistency of the results of studies in meta-analyses. What does this new quantity mean, and why is assessment of heterogeneity so important to clinical practice? Systematic reviews and meta-analyses can provide convincing and reliable evidence relevant to many aspects of medicine and health care.1 Their value is especially clear when the results of the studies they include show clinically important effects of similar magnitude. However, the conclusions are less clear when the included studies have differing results. In an attempt to establish whether studies are consistent, reports of meta-analyses commonly present a statistical test of heterogeneity. The test seeks to determine whether there are genuine differences underlying the results of the studies (heterogeneity), or whether the variation in findings is compatible with chance alone (homogeneity). However, the test is susceptible to the number of trials included in the meta-analysis. We have developed a new quantity, I 2, which we believe gives a better measure of the consistency between trials in a meta-analysis. Assessment of the consistency of effects across studies is an essential part of meta-analysis. Unless we know how consistent the results of studies are, we cannot determine the generalisability of the findings of the meta-analysis. Indeed, several hierarchical systems for grading evidence state that the results of studies must be consistent or homogeneous to obtain the highest grading.2–4 Tests for heterogeneity are commonly used to decide on methods for combining studies and for concluding consistency or inconsistency of findings.5 6 But what does the test achieve in practice, and how should the resulting P values be interpreted? A test for heterogeneity examines the null hypothesis that all studies are evaluating the same effect. The usual test statistic …

45,105 citations


"Acute exercise and subsequent energ..." refers methods in this paper

  • ...Values of 25%, 50%, and 75% were used for the I 2 analysis of heterogeneity, and correspond to low, moderate, and high heterogeneity, respectively (Higgins et al. 2003)....

    [...]

Journal ArticleDOI
Jacob Cohen1
TL;DR: A convenient, although not comprehensive, presentation of required sample sizes is providedHere the sample sizes necessary for .80 power to detect effects at these levels are tabled for eight standard statistical tests.
Abstract: One possible reason for the continued neglect of statistical power analysis in research in the behavioral sciences is the inaccessibility of or difficulty with the standard material. A convenient, although not comprehensive, presentation of required sample sizes is provided here. Effect-size indexes and conventional values for these are given for operationally defined small, medium, and large effects. The sample sizes necessary for .80 power to detect effects at these levels are tabled for eight standard statistical tests: (a) the difference between independent means, (b) the significance of a product-moment correlation, (c) the difference between independent rs, (d) the sign test, (e) the difference between independent proportions, (f) chi-square tests for goodness of fit and contingency tables, (g) one-way analysis of variance, and (h) the significance of a multiple or multiple partial correlation.

38,291 citations


"Acute exercise and subsequent energ..." refers methods in this paper

  • ...In accordance with Cohen (1992), we interpreted effect sizes of < 0.2 as trivial, 0.2 – 0.3 as small, 0.5 as moderate, and > 0.8 as large (Cohen 1992)....

    [...]

Journal ArticleDOI
TL;DR: An Explanation and Elaboration of the PRISMA Statement is presented and updated guidelines for the reporting of systematic reviews and meta-analyses are presented.
Abstract: Systematic reviews and meta-analyses are essential to summarize evidence relating to efficacy and safety of health care interventions accurately and reliably. The clarity and transparency of these reports, however, is not optimal. Poor reporting of systematic reviews diminishes their value to clinicians, policy makers, and other users. Since the development of the QUOROM (QUality Of Reporting Of Meta-analysis) Statement—a reporting guideline published in 1999—there have been several conceptual, methodological, and practical advances regarding the conduct and reporting of systematic reviews and meta-analyses. Also, reviews of published systematic reviews have found that key information about these studies is often poorly reported. Realizing these issues, an international group that included experienced authors and methodologists developed PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) as an evolution of the original QUOROM guideline for systematic reviews and meta-analyses of evaluations of health care interventions. The PRISMA Statement consists of a 27-item checklist and a four-phase flow diagram. The checklist includes items deemed essential for transparent reporting of a systematic review. In this Explanation and Elaboration document, we explain the meaning and rationale for each checklist item. For each item, we include an example of good reporting and, where possible, references to relevant empirical studies and methodological literature. The PRISMA Statement, this document, and the associated Web site (http://www.prisma-statement.org/) should be helpful resources to improve reporting of systematic reviews and meta-analyses.

25,711 citations


"Acute exercise and subsequent energ..." refers background or methods in this paper

  • ...These were all considered for inclusion to minimise the risk of publication bias, which can occur if only published studies are included, since studies with larger effect sizes are more likely to be published in the peer-reviewed literature (Liberati et al. 2009)....

    [...]

  • ...Guidelines from the recent PRIMSA Statement were followed in preparation of this paper, including a checklist for reporting systematic reviews and meta-analyses (Liberati et al. 2009)....

    [...]

Journal ArticleDOI
TL;DR: The results show the utility of the I(2) index as a complement to the Q test, although it has the same problems of power with a small number of studies.
Abstract: In meta-analysis, the usual way of assessing whether a set of single studies is homogeneous is by means of the Q test. However, the Q test only informs meta-analysts about the presence versus the absence of heterogeneity, but it does not report on the extent of such heterogeneity. Recently, the I(2) index has been proposed to quantify the degree of heterogeneity in a meta-analysis. In this article, the performances of the Q test and the confidence interval around the I(2) index are compared by means of a Monte Carlo simulation. The results show the utility of the I(2) index as a complement to the Q test, although it has the same problems of power with a small number of studies.

2,750 citations


"Acute exercise and subsequent energ..." refers background in this paper

  • ...For Cochrane’s Q, significant heterogeneity is known to exist when the Q value exceeds the degrees of freedom (df) of the estimate (Huedo-Medina et al. 2006)....

    [...]

Journal ArticleDOI
TL;DR: There is inadequate evidence to determine whether PA prevents or attenuates detrimental changes in chronic disease risk during weight gain, and no evidence from well-designed randomized controlled trials exists to judge the effectiveness of PA for prevention of weight regain after weight loss.
Abstract: Overweight and obesity affects more than 66% of the adult population and is associated with a variety of chronic diseases. Weight reduction reduces health risks associated with chronic diseases and is therefore encouraged by major health agencies. Guidelines of the National Heart, Lung, and Blood Institute (NHLBI) encourage a 10% reduction in weight, although considerable literature indicates reduction in health risk with 3% to 5% reduction in weight. Physical activity (PA) is recommended as a component of weight management for prevention of weight gain, for weight loss, and for prevention of weight regain after weight loss. In 2001, the American College of Sports Medicine (ACSM) published a Position Stand that recommended a minimum of 150 min wk(-1) of moderate-intensity PA for overweight and obese adults to improve health; however, 200-300 min wk(-1) was recommended for long-term weight loss. More recent evidence has supported this recommendation and has indicated more PA may be necessary to prevent weight regain after weight loss. To this end, we have reexamined the evidence from 1999 to determine whether there is a level at which PA is effective for prevention of weight gain, for weight loss, and prevention of weight regain. Evidence supports moderate-intensity PA between 150 and 250 min wk(-1) to be effective to prevent weight gain. Moderate-intensity PA between 150 and 250 min wk(-1) will provide only modest weight loss. Greater amounts of PA (>250 min wk(-1)) have been associated with clinically significant weight loss. Moderate-intensity PA between 150 and 250 min wk(-1) will improve weight loss in studies that use moderate diet restriction but not severe diet restriction. Cross-sectional and prospective studies indicate that after weight loss, weight maintenance is improved with PA >250 min wk(-1). However, no evidence from well-designed randomized controlled trials exists to judge the effectiveness of PA for prevention of weight regain after weight loss. Resistance training does not enhance weight loss but may increase fat-free mass and increase loss of fat mass and is associated with reductions in health risk. Existing evidence indicates that endurance PA or resistance training without weight loss improves health risk. There is inadequate evidence to determine whether PA prevents or attenuates detrimental changes in chronic disease risk during weight gain.

2,505 citations


"Acute exercise and subsequent energ..." refers background in this paper

  • ...Further research is needed to examine how food intake would respond to multiple shorter walks compared to one extended walking bout, since this is more likely to reflect daily physical activity patterns (Donnelly et al. 2009)....

    [...]